

TABLES

VENUS,

PREPARED FOR THE USE OF

THE AMERICAN EPHEMERIS AND NAUTICAL ALIIANAG.

BY

GEORGE W. HILL.

PUBLISHED BY AUTHORITY OF THE SECRETARY OF THE NAVY.

> BUREAU OF NAVIGATION, WASHINGTON.
> 1873.

TABLES

VENUS,

PREPARED FOR THE USE OF

THE AMERICAN EPHEMERIS AND NAUTICAL ALMANAC.

BY

GEORGE W. HILL.

PUBLISHED BY AUTHORITY OF THE SECRETARY OF THE NAVY.

BUREAU OF NAVIGATION, WASHINGTON.
1872.

519014

जमनपषान

PREFACE.

The following tables of Venus have been prepared to take the place of the unsatisfactory elements and tables heretofore used in the preparation of the American Ephemeris and Nautical Almanac.

The elements given in Le Verrier's Annales de l'Observatoire Imperial de Paris, Tome VI., have been corrected by the discussion of an extended series of observations; Le Verrier's expressions for the perturbations have been modified by changes in the adopted values of the planetary masses; and the tables have been carefully arranged so as to facilitate the computation either of particular places, or of an Ephemeris, of the planet.

The work has been performed by Mr. George W. Hill, who has long been one of the most efficient Assistants in the preparation of the works published by this office.

J. H. C. COFFIN,
Prof. Math. U. S. N., Superintendent of Nautical Almanac.

Washington, May, 1872.

CONTENTS.

Istrodectios. Construction and use of the Tables
Page
Elements of the orbit of Venus 1850.01
Precession of the equinoxes 2
Masses of the planets 2
Varying elements of the orbit of Venus 2
Perturbations of the orbit longitude 3
u u a logarithm of the radius vector 4
" * u latitude. 5
Arguments of the tables 6
Obliquity of the ecliptic and nutation 6
Formula for rectangular coördinates 7
" " the effect of nutation. 7
" " aberration, parallax and semi-diameter 7,8

* \quad " rectangular coördinates referred to the ecliptic and equinox of a fixed date 8
Explanation of Tables 1 to XV 9
« 4 « XVI to XXV 10
u \quad u \quad (XXVI to XXXV 11
a 4 « XXXVI to XL. 12 13
Dirctions for the wee of the ToWles
Dirctions for the wee of the ToWles
Directions for the wse of the Tables 14
Example 16
Transit of Venus in 1761 21
« * * 1769 *2
Corrections of the elements of the orbit of Venms 23
Leverrier's elements of the orbnt of Venus 23
Position of Venus at the transits of 1761 and 1769 23
Normal places in the inferior part of the orbit 24
* \quad a \quad a $=$ superior part of the orbit 25
Equations of condition derived from the longitudes 27
u \quad u \quad u \quad u latitudes 31
Normal equations 34
Corrections of Leverrier's elements 36
Required correction of the mass of Venus 36
Occultation of Mercury by Venus in 1737 36
TABLES.
Table I. Longitudes of the principal observatories 2
II. Julian date of the beginning of each year 3
III. Number of days from the beginuing of the year 4
IV Equivalents of hours, minutes and seconds in decimals of a day 5
V. Periods of the Arguments 5
VI. Mean longitade, Argaments, $\mathbb{N} e$, for the beginning of each year 6
VII. Motion of mean longitade, \&ic.: Fraction of a year 14
VIII. \quad * \quad * for hours, $d i c$. 17
IX. Factor of a small correction of the longitude 17
X. Equation of the centre 18
XI. to XXV. Perturbations of the longitode 26
Page.
Table . . XXVI. Logarithm of the elliptic radius vector 46
XXVII, to XXXVI. Perturbations of $\log r$ 51
XXXVII., XXXVIII. Perturbations of the latitude 66
XXXIX. Values of K_{x}, K_{y}, \&c., and Args. XV. and XVI for the beginning of each year 72
XL. Corrections of $K_{\mathrm{x}}, K_{\mathrm{y}}, \& c$., due to lunar Nutation 76
XLI. " " " " " due to solar Nutation 77
XLII. Factors for finding corrections of x, y, z, due to perturbations of the latitude 78
XLIII. Parallax and semidiameters 78
XLIV. Motions of the Arguments for centuries 79
XLV. A term of long period in the perturbation of the longitude 80
XLVI. Reduction to the Eeliptic 80

INTRODUCTION.

CONSTRUCTION AND USE OF THE TABLES.

The Tables are based on the following elements :-
Epoch, 1850, Jan. 0.0, Washington Mean Time.

$$
\begin{array}{rl}
L^{\prime} & =244 \AA^{\prime} 18 \\
18 & 18.32 \\
\pi^{\prime} & =129 \\
127 & 42.86 \\
\delta^{\prime} & =7519 \\
\hline 53.10 \\
i^{\prime} & =323 \\
e^{\prime} & =0.006843113 \\
n^{\prime} & =2106641^{\prime \prime} .35447
\end{array}
$$

These elements have been derived from a discussion of the data furnished by the transits of Venus in 1761 and 1769, and by observations made at Greenwich in the interval 1836-1870, at Paris in the interval 1838-1866, and at Washington in the interval 1863-1867. In this discussion the Solar Theory of Hansen and Olufsen was used.* Consequently these Tables should be used in conjunction with the Tables du Soleil of these authors.t

The value of the Precession of the Equinoxes, according to Peters, \ddagger is

$$
\cdot 50^{\prime \prime} .2411 t+0^{\prime \prime} .0001134 t^{2}
$$

where the unit of t is the tropical year, and it is counted from 1800. If we make the unit the Julian year, and count t from 1850, the formula will be

$$
50^{\prime \prime} .25351 t+0^{\prime \prime} .0001134 t^{2}
$$

The formulæ which define the motion of the plane of the ecliptic are, according to Hansen and Olufsen, $\$$

$$
\begin{aligned}
& \sin i^{\prime \prime} \sin \Omega^{\prime \prime}=+0^{\prime \prime} .053916 t+0^{\prime \prime} .00001887 t^{2} \\
& \sin i^{\prime \prime} \cos \Omega^{\prime \prime}=-0^{\prime \prime} .467839 t+0^{\prime \prime} .00000562 t^{2}
\end{aligned}
$$

In order to obtain the tropical motion of the planet, it is necessary to add, to the sidereal motion, the precession, and the small term,

$$
-\frac{1}{2} \sin i^{\prime} \sin i^{\prime \prime} \sin \left(\delta^{\prime}-\delta^{\prime \prime}\right)
$$

the numerical value of which is $+0^{\prime \prime} .01382 t$. This it is also necessary to add to the longitude of the perihelion.

[^0]
INTRODUCTION.

The values of the planetary masses, adopted, are

Mercury	$m=\frac{1}{4865751}$,	Mars	$m^{\prime \prime \prime}=\frac{1}{3200900}$,
Venus	$m^{\prime}=\frac{1}{408134}$,	Jupiter	$m^{\mathrm{iv}}=\frac{1}{1050}$,
The Earth and Moon $m^{\prime \prime}=\frac{1}{322800}$,	Saturn	$m^{\mathrm{v}}=\frac{1}{3560}$.	

The mass of Mercury is that of Encke, ${ }^{*}$ the mass of the Earth and Moon is that found by Prof. S. Newcomb, \dagger and which corresponds to the value $8^{\prime \prime} .848$ of the mean horizontal parallax of the Sun; the values of the other masses are those adopted by Hansen and Olufsen. On these values of the disturbing masses depend the expressions of the secular and periodic perturbations used, with the single exception, that, since the discussion of the "cobservations indicated $32^{\prime \prime} .515$ as the value of the annual tropical motion of the node, this value has been preferred to the value $32^{\prime \prime} .2931$, given by theory. If we suppose that the modification of the values of the masses, necessary \therefore 啹 produce the first number, should be applied to Venus alone, the mass of this planet would be reduced to 1 $\overline{427240}$.

Thus the following are the expressions of the varying elements, the longitudes being referred to the mean equinox and ecliptic of date, and t reckoned from 1850, Jan. 0.0, Washington Mean Time :-

$$
\begin{aligned}
L^{\prime} & =24 \AA^{\prime} 1^{\prime} 18.32+2106691.62180 t+0^{\prime \prime} .0001134 t^{2} \\
\pi^{\prime} & =1292742.86+\quad 50.0494 t-0.000592 t^{2}, \\
\delta^{\prime} & =751953.10+32.5150 t+0.000151 t^{2} \\
i^{\prime} & =32335.01+00.03814 t-0.0000016 t^{2}, \\
e^{\prime} & =0.006843113-0.00000050009 t+0.0000000000128 t^{2}, \\
& =1411^{\prime \prime} .494-0^{\prime \prime} .10315 t+0^{\prime \prime} .00000265 t^{2} .
\end{aligned}
$$

The value of the semi-axis major of the planet's orbit is given by the equation

$$
a^{\prime}=\left[\frac{1+m^{\prime}}{1+m^{\prime \prime}} \cdot \frac{n^{\prime \prime 2}}{n^{\prime 2}}\right]^{\frac{1}{3}} a^{\prime \prime}
$$

To be consistent, we must employ the same linear unit for the radius vector of Venus as that which Hansen and Olufsen have used for the radius vector of the Earth. From an examination of their formulæ, it appears that they have taken as unity, not $a^{\prime \prime}$, but, in the notation of Laplace, the quantity

$$
a^{\prime \prime}+\frac{1}{6} \sum m a^{\prime / 3} \frac{d A^{(0)}}{d a^{\prime \prime}}
$$

Σ denoting summation with respect to all the masses which produce sensible perturbations in the motion of the Earth. Hence their value of $a^{\prime \prime}$ is

$$
1-\frac{1}{6} \Sigma m a^{\prime / 2} \frac{d A^{(0)}}{d a^{\prime \prime}}
$$

And, the numerical values being substituted, we obtain

$$
\log a^{\prime \prime}=9.9999998786
$$

The tropical motion of the Sun, in a Julian year, is, according to the Tables $d u$ Soleil, equal to

$$
360^{\circ}-22^{\prime \prime} .56009-0^{\prime \prime} .380853 \times 0.01677+50^{\prime \prime} .23414
$$

If from this is subtracted $50^{\prime \prime} .25351$, our value of the precession, the value of $n^{\prime \prime}$, we adopt, is obtained,

$$
n^{\prime \prime}=1295977^{\prime \prime} .41415
$$

And consequently,
$\log a^{\prime}=9.8593376699$.

* Astronomische Nachrichten, No. 443.
\dagger Astronomical and Metcorologrcal Olservations made at the United States Naval Observatory during the year 1865. Appendix II., p. 29.

INTRODUCTION.

The expression of the equation of the centre, for the epoch 1850.0 , is

$$
+2822^{\prime \prime} .971 \sin M+12^{\prime \prime} .074 \sin 2 M+0^{\prime \prime} .072 \sin 3 M
$$

The expression of the logarithm of the elliptic radius vector for the same time is

$$
9.859342748-0.002971874 \cos M-0.000015253 \cos 2 M-0.000000099 \cos 3 M
$$

The elliptic heliocentric latitude referred to the ecliptic of date may be found from the formula

$$
\log \sin \text { lat. }=8.7722149+13.54 t+\log \sin \left[\text { orb. long. }+\left(360^{\circ}-\delta^{\prime}\right)\right]
$$

The secular perturbation of the orbit longitude is given by the formula,

$$
\left(-0^{\prime \prime} .12691 \sin M-0^{\prime \prime} .00108 \sin 2 M\right) \mathrm{m} .
$$

m denoting the number of anomalistic revolutions of the planet from the epoch.
The secular perturbation of the logarithm of the radius vector is given by the formula, (in units of the eighth decimal),

$$
(-0.046+13.360 \cos M+0.137 \cos 2 M) \mathrm{m}
$$

The following are the expressions for the periodic perturbations of Venus; $l, l^{\prime} \& c$. denoting the mean longitudes of the several planets in their order, referred to the mean equinox of 1850.0 . They have been obtained by multiplying the expressions given in Le Verrier's "Annales de l' Observatoire lmperial de Paris," Tome VI, by the proper factors.

Perturbations of the Orbit Longitude.

-

Action of Mercury.

$$
\begin{array}{ll}
+0.014 \sin \left(l-l^{\prime}\right) & +0.328 \sin \left(l-2 l^{\prime}+254^{\circ} .8\right) \\
-0.010 \sin 2\left(l-l^{\prime}\right) & +0.015 \sin \left(2 l-3 l^{\prime}+74^{\circ}\right) \\
-0.005 \sin 3\left(l-l^{\prime}\right) & +0.047 \sin \left(3 l^{\prime}-l+35^{\circ}\right) \\
+0.021 \sin \left(2 l-l^{\prime}+284^{\circ}\right) & \\
& +0.139 \sin \left(2 l-4 l^{\prime}+328^{\circ} .3\right) \\
& \\
& +0.453 \sin \left(2 l-5 l^{\prime}+35^{\circ} .1\right) .
\end{array}
$$

Action of the Earth.

```
- ".984 sin}(\mp@subsup{l}{}{\prime}-\mp@subsup{l}{}{\prime\prime}
-11.489 \operatorname{sin}2(\mp@subsup{l}{}{\prime}-\mp@subsup{l}{}{\prime\prime})
+7.260 sin (3\mp@subsup{l}{}{\prime\prime}-3\mp@subsup{l}{}{\prime\prime}+\mp@subsup{0}{}{\circ}\mp@subsup{7}{}{\prime}.6)
+ 1.050 \operatorname{sin}(4\mp@subsup{l}{}{\prime}-4\mp@subsup{l}{}{\prime\prime}+\mp@subsup{0}{}{\circ}1\mp@subsup{0}{}{\prime})
+0.335 sin (5 l' - 5 l'\prime}+\mp@subsup{1}{}{\circ}.5
+0.143 sin 6 (l' - l'\prime}
+}0.013\operatorname{sin}10(\mp@subsup{l}{}{\prime}-\mp@subsup{l}{}{\prime\prime}
+ 0.007 sin 11 (l' - l'\prime}
+0.004 sin 12(l\prime}-\mp@subsup{l}{}{\prime\prime}
+0.003 sin 13(\mp@subsup{l}{}{\prime}-\mp@subsup{l}{}{\prime\prime})
+0.059\operatorname{sin}(4\mp@subsup{i}{}{\prime}-3\mp@subsup{l}{}{\prime\prime}+22\mp@subsup{7}{}{\circ}.7)
+0.099\operatorname{sin}(3\mp@subsup{l}{}{\prime}-2\mp@subsup{l}{}{\prime\prime}+5\mp@subsup{3}{}{\circ}.2)
+0.049\operatorname{sin}(2\mp@subsup{l}{}{\prime\prime}-\mp@subsup{l}{}{\prime\prime}+5\mp@subsup{1}{}{\circ})
+0.070 sin (l\prime\prime}+10\mp@subsup{9}{}{\circ}.2
+0.093 sin (2 ll'}-\mp@subsup{l}{}{\prime}+1\mp@subsup{8}{}{\circ}.2
+3.515 sin (2\mp@subsup{l}{}{\prime}-3\mp@subsup{l}{}{\prime\prime}+26\mp@subsup{8}{}{\circ}\mp@subsup{7}{}{\prime}.5)
```

$+0.067 \sin 7\left(l^{\prime \prime}-l^{\prime \prime}\right) \quad+0.022 \sin \left(2 l^{\prime \prime \prime}+210^{\circ}\right)$
$+0.035 \sin 8\left(l^{\prime \prime}-l^{\prime \prime}\right) \quad+0.044 \sin \left(3 l^{\prime \prime}-l^{\prime}+53^{\circ}\right)$
$+0.019 \sin 9\left(l^{\prime \prime}-l^{\prime \prime}\right) \quad+1.495 \sin \left(5 l^{\prime \prime \prime}-3 l^{\prime \prime}+198^{\circ} 24\right)$

$$
\begin{aligned}
& +0.687 \sin \left(3 l^{\prime \prime}-4 l^{\prime \prime \prime}+268^{\circ} .1\right) \\
& +1.620 \sin \left(4 l^{\prime \prime}-5 l^{\prime \prime}+268^{\circ} 24^{\prime} .5\right) \\
& +0.210 \sin \left(5 l^{\prime \prime}-6 l^{\prime \prime \prime}+89^{\circ} .5\right) \\
& +0.055 \sin \left(6 l^{\prime \prime}-7 l^{\prime \prime}+89^{\circ}\right) \\
& +0.024 \sin \left(7 l^{\prime \prime}-8 l^{\prime \prime \prime}+88^{\circ}\right) \\
& +0.013 \sin \left(8 l^{\prime \prime}-9 l^{\prime \prime \prime}+90^{\circ}\right) \\
& +0.022 \sin \left(2 l^{\prime \prime \prime}+210^{\circ}\right) \\
& +0.044 \sin \left(3 l^{\prime \prime}-l^{\prime \prime}+53^{\circ}\right) \\
& +1.495 \sin \left(5 l^{\prime \prime \prime}-3 l^{\prime \prime}+198^{\circ} 24\right) \\
& +0.188 \sin \left(4 l^{\prime \prime}-6 l^{\prime \prime}+340^{\circ} .7\right) \\
& +0.096 \sin \left(5 l^{\prime \prime}-7 l^{\prime \prime}+337^{\circ} .5\right) \\
& +0.155 \sin \left(6 l^{\prime}-8 l^{\prime \prime}+163^{\circ} .1\right) \\
& +0.015 \sin \left(7 l^{\prime}-9 l^{\prime \prime}+160^{\circ}\right) \\
& +0.013 \sin \left(5 l^{\prime \prime}-2 l^{\prime \prime}+77^{\circ}\right) \\
& +0.218 \sin \left(5 l^{\prime \prime}-8 l^{\prime \prime}+66^{\circ} .5\right) \\
& +0.013 \sin \left(7 l^{\prime \prime}-10 l^{\prime \prime \prime}+67^{\circ}\right) \\
& +0.067 \sin \left(9 l^{\prime \prime}-13 l^{\prime \prime}+346^{\circ} .2\right) \\
& +2.820 \sin \left(8 l^{\prime \prime}-13 l^{\prime \prime}+227^{\circ} 58^{\prime}\right) \\
& +0.026 \sin \left(13 l^{\prime \prime \prime}-7 l^{\prime}+198^{\circ}\right) .
\end{aligned}
$$

INTRODUCTION.

Action of Mars.

$$
\begin{aligned}
& -0.048 \sin \left(l^{\prime}-l^{\prime \prime \prime}\right) \\
& +0.059 \sin 2\left(l^{\prime}-l^{\prime \prime \prime}\right) \\
& +0.019 \sin \left(l^{\prime}-2 l^{\prime \prime \prime}+155^{\circ}\right) \\
& +0.657 \sin \left(2 l^{\prime}-3 l^{\prime \prime \prime}+332^{\circ} 44^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\prime \prime}{\prime \prime} .009 \sin \left(3 l^{\prime}-4 l^{\prime \prime \prime}+333^{\circ}\right) \\
& +1.168 \sin \left(l^{\prime \prime}-3 l^{\prime \prime \prime}+117^{\circ} 56^{\prime}\right) \\
& +0.019 \sin \left(2 l^{\prime}-4 l^{\prime \prime \prime}+126^{\circ}\right) \\
& +0.021 \sin \left(3 l^{\prime}-6 l^{\prime \prime \prime}+281^{\circ}\right) \\
& +0.082 \sin \left(2 l^{\prime \prime}-6 l^{\prime \prime \prime}+74^{\circ} .8\right)
\end{aligned}
$$

Action of Jupiter.

$$
\begin{aligned}
& -\ddot{\prime \prime} .959 \sin \left(l^{\prime}-l^{\mathrm{iv}}+0^{\circ} 31^{\prime}\right) \\
& +0.880 \sin 2\left(l^{\prime}-l^{\mathrm{iv}}\right) \\
& +0.041 \sin 3\left(l^{\prime}-l^{\mathrm{iv}}\right) \\
& +0.007 \sin 4\left(l^{\prime}-l^{\mathrm{iv}}\right) \\
& +0.026 \sin \left(2 l^{\prime}-l^{\mathrm{iv}}+113^{\circ}\right) \\
& +1.557 \sin \left(l^{\mathrm{iv}}+169^{\circ} 50^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +{ }^{\prime \prime} .477 \sin \left(l^{\prime \prime}-2 l^{\mathrm{iv}}+155^{\circ} .6\right) \\
& +0.167 \sin \left(2 l^{\prime}-3 l^{\mathrm{iv}}+12^{\circ} .1\right) \\
& +0.019 \sin \left(3 l^{\prime}-4 l^{\mathrm{iv}}+12^{\circ}\right) \\
& +0.094 \sin \left(l^{\prime}+l^{\mathrm{iv}}+2^{\circ} .3\right) \\
& +0.055 \sin \left(2 l^{\mathrm{iv}}+143^{\circ}\right) \\
& +0.046 \sin \left(l^{\prime \prime}-3 l^{\mathrm{iv}}+164^{\circ}\right) \\
& +0.027 \sin \left(2 l^{\prime}-4 l^{\mathrm{iv}}+24^{\circ}\right)
\end{aligned}
$$

Action of Saturn.

$$
\begin{aligned}
& -0.178 \sin \left(l^{\prime \prime}-l^{v}\right) \\
& +0.050 \sin 2\left(l^{\prime \prime}-l^{v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +{ }^{\prime \prime} .205 \sin \left(l^{\mathrm{v}}+190^{\circ}\right) \\
& +0.025 \sin \left(l^{\prime}-2 l^{\mathrm{v}}+.151^{\circ}\right) \\
& +0.010 \sin \left(2 l^{\prime}-3 l^{\mathrm{v}}+90^{\circ}\right)
\end{aligned}
$$

Perturbation of the second order, depending on the product of the masses of the Earth and Mars.

$$
+0^{\prime \prime} .282 \sin \left(4 l^{\prime \prime \prime}+3 l^{\prime \prime}-7 l^{\prime \prime}+147^{\circ} .1\right)
$$

Perturbations of the Common Logarithm of the Radius Vector, in units of the eighth decimal.
Action of Mercury.

```
+4.3
+8.1 cos(l-l')
+ 1.1 cos 2(l-l')
+6.1\operatorname{cos}(2l-l}+28\mp@subsup{5}{}{\circ}
+4.3 cos (l'}+10\mp@subsup{5}{}{\circ}
```

$$
\begin{aligned}
& +15.3 \cos \left(2 l-4 l^{\prime}+150^{\circ} .7\right) \\
& +22.2 \cos \left(l-2 l^{\prime}+75^{\circ} .1\right) \\
& +1.9 \cos \left(2 l-3 l^{\prime}+75^{\circ}\right) \\
& +3.5 \cos \left(3 l^{\prime}-l+207^{\circ}\right) \\
& +7.5 \cos \left(2 l-5 l^{\prime}+226^{\circ}\right) .
\end{aligned}
$$

Action of the Earth.
-18.6
$+228.2 \cos \left(l^{\prime \prime}-l^{\prime \prime}\right)$
大 $998.6 \cos 2\left(l^{\prime \prime}-l^{\prime \prime}\right)$
$-841.8 \cos \left(3 l^{\prime}-3 l^{\prime \prime}+0^{\circ} 8^{\prime}\right)$
$-145.2 \cos 4\left(l^{\prime \prime}-l^{\prime \prime}\right)$
$-52.2 \cos \left(5 l^{\prime}-5 l^{\prime \prime}+0^{\circ} 20^{\prime}\right)$
$-23.0 \cos 6\left(l^{\prime \prime}-l^{\prime \prime}\right)$
$-11.5 \cos 7\left(l^{\prime \prime}-l^{\prime \prime}\right)$

- $6.4 \cos 8\left(l^{\prime \prime}-l^{\prime \prime}\right)$
- $3.5 \cos 9\left(l^{\prime \prime}-i^{\prime \prime}\right)$
- $2.6 \cos 10\left(l^{\prime}-l^{\prime \prime}\right)$
$+7.2 \cos \left(4 l^{\prime \prime}-3 l^{\prime \prime}+45^{\circ}\right)$
$+11.7 \cos \left(3 l^{\prime}-2 l^{\prime \prime}+230^{\circ} .5\right)$
$+6.6 \cos \left(2 l^{\prime}-l^{\prime \prime}+230^{\circ}\right)$
$+3.1 \cos \left(l^{\prime}+105^{\circ}\right)$

$$
\begin{aligned}
& +\quad 4.7 \cos \left(l^{\prime \prime}+286^{\circ}\right) \\
& +\quad 3.2 \cos \left(2 l^{\prime \prime}-l^{\prime \prime}+114^{\circ}\right) \\
& +\quad 76.8 \cos \left(2 l^{\prime \prime}-3 l^{\prime \prime \prime}+89^{\circ} .8\right) \\
& +\quad 46.1 \cos \left(3 l^{\prime \prime}-4 l^{\prime \prime}+88^{\circ} .9\right) \\
& +162.2 \cos \left(4 l^{\prime \prime}-5 l^{\prime \prime \prime}+88^{\circ} 52^{\prime}\right) \\
& +\quad 25.6 \cos \left(5 l^{\prime \prime}-6 l^{\prime \prime \prime}+268^{\circ} .7\right) \\
& +\quad 7.7 \cos \left(6 l^{\prime \prime}-7 l^{\prime \prime \prime}+268^{\circ}\right) \\
& +\quad 4.2 \cos \left(7 l^{\prime \prime}-8 l^{\prime \prime \prime}+270^{\circ}\right) \\
& +\quad 3.7 \cos \left(2 l^{\prime \prime}+30^{\circ}\right) \\
& +\quad 4.5 \cos \left(3 l^{\prime \prime \prime}-l^{\prime}+249^{\circ}\right) \\
& +\quad 17.2 \cos \left(5 l^{\prime \prime}-3 l^{\prime \prime}+21^{\circ} .8\right) \\
& +\quad 7.2 \cos \left(4 l^{\prime \prime}-6 l^{\prime \prime}+159^{\circ}\right) \\
& +\quad 7.1 \cos \left(5 l^{\prime \prime}-7 l^{\prime \prime}+172^{\circ}\right) \\
& +\quad 17.2 \cos \left(6 l^{\prime \prime}-8 l^{\prime \prime}+338^{\circ} .2\right) \\
& +\quad 6.9 \cos \left(9 l^{\prime \prime}-13 l^{\prime \prime \prime}+158^{\circ}\right) \\
& +\quad 2.4 \cos \left(13 l^{\prime \prime}-7 l^{\prime \prime}+25^{\circ}\right) .
\end{aligned}
$$

INTRODUCTION.

Action of Mars.

$$
+68.1 \cos \left(2 l^{\prime}-3 l^{\prime \prime \prime}+152^{\circ} .6\right) .
$$

Action of Jupiter.

- 19.2
$+299.2 \cos \left(l^{\prime}-l^{\text {iv }}+0^{\circ} 20^{\prime}\right)$
$-133.0 \cos 2\left(l^{\prime}-l^{\text {iv }}\right)$
- $7.0 \cos 3\left(l^{\prime}-l^{\text {iv }}\right)$
$+\quad 1.1 \cos \left(2 l^{\prime}-l^{\mathrm{iv}}+237^{\circ}\right)$

$$
\begin{aligned}
& +8.8 \cos \left(l^{\mathrm{iv}}+352^{\circ}\right) \\
& +46.9 \cos \left(l^{\prime}-2 l^{\mathrm{iv}}+335^{\circ} .0\right) \\
& +24.8 \cos \left(2 l^{\prime}-3 l^{\mathrm{iv}}+192^{\circ} .1\right) \\
& +9.6 \cos \left(l^{\prime}+l^{\mathrm{iv}}+182^{\circ}\right) \\
& +4.4 \cos \left(l^{\prime}-3 l^{\mathrm{iv}}+340^{\circ}\right)
\end{aligned}
$$

Action of Saturn.

$$
\begin{array}{ll}
+18.7 \cos \left(l^{\prime}-l^{v}\right) & +2.5 \cos \left(l^{\prime}-2 l^{v}+334^{\circ}\right) \\
-4.3 \cos 2\left(l^{\prime}-l^{v}\right) &
\end{array}
$$

Perturbations of the Latitude.

Action of the Earth.

$$
\begin{aligned}
& +0.012 \sin \left(2 l^{\prime \prime}-2 l^{\prime \prime}+175^{\circ}\right) \\
& +0.016 \sin \left(3 l^{\prime}-3 l^{\prime \prime}+356^{\circ}\right) \\
& +0.013 \sin \left(4 l^{\prime \prime}-3 l^{\prime \prime}+284^{\circ}\right) \\
& +0.026 \sin \left(3 l^{\prime}-2 l^{\prime \prime}+286^{\circ}\right) \\
& +0.078 \sin \left(2 l^{\prime \prime}-l^{\prime \prime}+285^{\circ}\right) \\
& +0.124 \sin \left(l^{\prime}+104^{\circ} .5\right) \\
& +0.092 \sin \left(2 l^{\prime \prime}-l^{\prime}+104^{\circ} .5\right)
\end{aligned}
$$

$$
\begin{aligned}
& +0.075 \sin \left(2 l^{\prime \prime}-3 l^{\prime \prime}+75^{\circ} .5\right) \\
& +0.081 \sin \left(3 l^{\prime}-4 l^{\prime \prime}+75^{\circ} .5\right) \\
& +0.308 \sin \left(4 l^{\prime}-5 l^{\prime \prime}+75^{\circ} .3\right) \\
& +0.050 \sin \left(5 l^{\prime \prime}-6 l^{\prime \prime}+256^{\circ}\right) \\
& +0.014 \sin \left(6 l^{\prime \prime}-7 l^{\prime \prime}+258^{\circ}\right) \\
& +0.020 \sin \left(3 l^{\prime \prime}-l^{\prime}+20^{\circ}\right) \\
& +0028 \sin \left(6 l^{\prime}-8 l^{\prime \prime}+343^{\circ}\right) \\
& +0.015 \sin \left(9 l^{\prime}-13 l^{\prime \prime}+143^{\circ}\right)
\end{aligned}
$$

Action of Jupiter.

$$
\begin{aligned}
& \left.+{ }^{\prime \prime} .020 \sin l^{\prime}-l^{\mathrm{iv}}+153^{\circ}\right) \\
& +0.159 \sin \left(l^{\prime}-2 l^{\mathrm{iv}}+61^{\circ} .8\right)
\end{aligned}
$$

Action of Saturn.

$$
+0^{\prime \prime} .017 \sin \left(l^{\prime}-2 l^{v}+28^{\circ}\right)
$$

The tropical motion of Venus in different intervals of time, for the epoch 1850.0 , is,

Denoting by d the number of days elapsed from the epoch (1850, Jan. 0.0, Washington mean time), the values of $l, l^{\prime}, \& c$., are-

$$
\begin{gathered}
l^{\prime}=324.0656+4.0923387467 \mathrm{~d}, \\
l^{\prime}=244.3050+1.6021304695 \mathrm{~d}, \\
l^{\prime \prime}=100.0159+0.9856091228 \mathrm{~d}, \\
l^{\prime \prime \prime}=83.2669+0.5240328545 \mathrm{~d}, \\
l^{\mathrm{iv}}=159.9594+0.0830912762 \mathrm{~d}, \\
l^{\mathrm{v}}=14.8203+0.0334596753 \mathrm{~d} . \\
5
\end{gathered}
$$

INTRODUCTION.

The Arguments employed in these tables have severally the following meanings:-
The Argument rat is an integer, which denotes the number of times Venus has passed through its perihelion since the beginning of 1850 ; it is negative before this epoch, and remains constant during an amomistic revolution of tho planet.

Argument I is the number of mean solar days siuce $M=0^{\circ}$.
" II is the number of Julian yeurs since $8 l^{\prime}-13 l^{\prime \prime \prime}+318^{\circ} 47^{\prime}=0^{\circ}$.
" III is the number of mean solar days sinec $l^{\prime}-.3 t^{\prime \prime \prime}=0^{\circ}$.
" IV is the number of mean solar days since 5$)^{\prime \prime \prime}-3 "^{\prime \prime}+288^{\circ} 27^{\prime}=0^{\circ}$.
" V is the number of mean solar days since $2 l^{\prime}-3 l^{\prime \prime}=0^{\circ}$.
" VI is the number of mean solar days since $l^{\prime}-l^{\prime \prime}=0^{\circ}$.
" VII is the number of mean solar days since $4 l^{\prime \prime}-57^{\prime \prime}+1^{\circ} 59^{\prime}=0^{\circ}$.
" VIII is the number of mean solar days sinee $\left.27^{\prime}-3\right]^{\prime \prime \prime \prime}+65^{\circ} 32^{\prime}=0^{\circ}$.
" IX is the number of mean solar days since $7^{\prime \prime} 7^{\mathrm{iv}}=0^{\circ}$.
" X is the value of l, when last $l^{\prime}=129^{\circ} 2714^{\prime \prime} .5,^{*}$ in parts of 60 to a circumference.
" XI is the value of $\ell^{\prime \prime}$, when last $\gamma^{\prime}=129^{\circ} 27^{\prime} 14^{\prime \prime} .5$, in parts of 240 to a circumference.
" XII is the value of $l^{\prime \prime \prime}$ when last $7^{\prime}=129^{\circ} 27^{\prime} 11^{\prime \prime} .5$, in parts of 60 to a circumferenee.
" XIII is the value of $7^{\prime \prime}$, when last $l^{\prime}=129^{\circ} 27^{\prime} 14^{\prime \prime} .5$, in parts of 60 to a circumference.
" XIV is the value of T^{v}, when last $\eta^{\prime}=129^{\circ} 27^{\prime} 11^{\prime \prime} .5$, in parts of 36 to a circumference.
". XV is $\operatorname{Arg} . \mathrm{XI}+\mathrm{Arg} . \mathrm{XIII}+0.22+$ day of the year, of Hansen and Olufsen.
" XVI is Arg. I $+022052+0.01791+$ day of the year, of Hansen and Olufsen.
Arguments X-XIV remain constant during a period of Argument I, and are atgmented, in each ease, by a certain fixed quantity, when Vonus passes through its perihelion and mis inereased by a unit.

From the data previously given, are readily obtained the following expressions for the value of the different arguments; i denoting an integer, in general so taken that the Argument may be less thau its period:

$$
\begin{aligned}
& \mathrm{I}=71^{4} .6815355^{2}+d+0^{4} .0000001224 t^{2}-224^{4} .700777861 \mathrm{~mm}, \uparrow \\
& \mathrm{II}=167 \% .9+t-238.92 i, \\
& \mathrm{III}=11804^{2} .26 \quad+d-11987^{2} .25 i, \\
& \text { IV }=457^{d} .137 \quad+d-2959^{d} .209 i, \\
& \mathrm{~V}=762^{2} .072+d-1454^{4} .9358 i, \\
& \mathrm{VI}=231^{1.0375}+d-583^{\mathrm{n}} .92137 \mathrm{i} \text {, } \\
& \mathrm{VII}=80^{4} .466+d-243^{d} .16487 i, \\
& \mathrm{VIII}=186^{\mathrm{d}} .467+d-220^{4} .56628 i, \\
& \mathrm{IX}=55^{4} .526+d-236^{2} .99191 i, \\
& \mathrm{X}=5.167+33.25863 \mathrm{pn2}-60 i \text {, } \\
& \mathrm{XI}=19.5741+147.64477 \mathrm{~m}-240 i \\
& \mathrm{XII}=\quad 7.6168+19.62509 \mathrm{~m}-60 i, \\
& \text { XIII }=25.6671+3.11178 \text { m }-60 i \text {, } \\
& \mathrm{XIV}=1.2422+0.75181 \mathrm{~m}-36 i, \\
& \mathrm{XV}=4037^{2} .4+d-6798^{d} .262 i, \\
& \mathrm{XVI}=\quad 1^{3} .64+d-365^{\mathrm{d}} .21219 i .
\end{aligned}
$$

'The values of the obliquity of the celiptic and of the nutation, employed in these 'lables, are those given in the Tubles du Soleil,

$$
\begin{aligned}
\varepsilon & =23^{\circ} 27^{\prime} 31^{\prime \prime} .42-0^{\prime \prime} .46784 t-0^{\prime \prime} .000001405 t^{2} \\
\Delta \zeta^{\prime \prime} & =-17^{\prime \prime} .332 \sin \delta+0^{\prime \prime} .208 \sin 2 \Omega-1^{\prime \prime} .254 \sin 2 \odot \\
\Delta \varepsilon & =+9^{\prime \prime} .271 \cos \Omega-0^{\prime \prime} .089 \cos 2 \Omega
\end{aligned}
$$

Ω_{0} being the longitude of the Moon's ascending node, and © the Sun's true longitude.

[^1]
INTRODUCTION.

The rectangular coördinates of a planet, referred to the equinox and equator, are most readily computed by means of the formulæ-

$$
\begin{aligned}
& x=k_{\mathrm{x}} r \sin \left(\lambda+K_{\mathrm{x}}\right)+p_{\mathrm{x}} \delta \beta, \\
& y=k_{\mathrm{y}} r \sin \left(\lambda+K_{\mathrm{y}}\right)+p_{y} \delta \beta, \\
& z=k_{\mathrm{z}} r \sin \left(\lambda+K_{z}\right)+p_{\mathrm{z}} \delta \beta,
\end{aligned}
$$

where λ is the orbit longitude, and $\delta \beta$ the perturbation of the latitude, expressed in parts of the radius
The quantities $k_{\mathrm{x}}, K_{\mathrm{x}}, \& c \mathrm{c}$., are obtained from the following formulæ:-
Find h, H, g, G from the equations

$$
\begin{array}{ll}
h \sin H=\sin ^{2} \frac{i}{2} \sin 2 \Omega, & g \sin G=\sin i \cos \Omega \\
h \cos H=\sin i \sin \Omega, & g \cos G=1-2 \sin ^{2} \frac{i}{2} \cos ^{2} \Omega
\end{array}
$$

then

$$
\begin{array}{cc}
k_{\mathrm{x}} \sin K_{\mathrm{x}}=1-2 \sin ^{2} \frac{i}{2} \sin ^{2} \Omega, & k_{\mathrm{y}} \sin K_{\mathrm{y}}=h \sin (H+\varepsilon), \\
k_{\mathrm{x}} \cos K_{\mathrm{x}}=h \sin H, & k_{\mathrm{y}} \cos K_{\mathrm{y}}=g \cos (G+\varepsilon), \\
k_{\mathrm{z}} \sin K_{\mathrm{z}}=-h \cos (H+\varepsilon), \\
k_{\mathrm{z}} \cos K_{\mathrm{z}}=\quad g \sin (G+\varepsilon) .
\end{array}
$$

The values of $p_{\mathrm{x}}, p_{\mathrm{y}}$ and p_{z} are, λ^{\prime} denoting the longitude reduced to the ecliptic,

$$
\begin{aligned}
& p_{\mathrm{x}}=-r \sin \beta \cos \lambda^{\prime} \\
& p_{\mathrm{y}}=-r \sin \beta \cos \varepsilon \sin \lambda^{\prime}-r \cos \beta \sin \varepsilon \\
& p_{\mathrm{z}}=-r \sin \beta \sin \varepsilon \sin \lambda^{\prime}+r \cos \beta \cos \varepsilon
\end{aligned}
$$

These formulæ avail for obtaining x, y, and z referred to any equinox and equator, provided that the longitudes λ, Ω are referred to the same equinox, and the proper values are assigned to the inclinations i and ε.

But when the values of $k_{\mathrm{x}}, K_{\mathrm{x}}, \& c$., have been computed for mean equinox of date, the effect of nutation on these quantities will be most easily computed by the aid of these differential coefficients,

$$
\begin{aligned}
& \frac{d \cdot \log k_{\mathrm{x}}}{d \varepsilon}=0, \\
& \frac{d . \log k_{y}}{d \varepsilon_{1}}=-\frac{M k_{z}}{k_{y}} \cos \left(K_{y}-K_{z}\right), \quad \frac{d K_{y}}{d \varepsilon}=\frac{k_{z}}{k_{y}} \sin \left(K_{\mathrm{y}}-K_{z}\right), \\
& \frac{d \cdot \log k_{\mathrm{z}}}{d \varepsilon}=\frac{\mathrm{K}_{\mathrm{z}} k_{y}}{k_{\mathrm{z}}} \cos \left(K_{\mathrm{y}}-K_{z}\right), \quad \frac{d K_{\mathrm{z}}}{d \varepsilon}=\frac{k_{\mathrm{y}}}{k_{z}} \sin \left(K_{\mathrm{y}}-K_{z}\right), \\
& \frac{d . \log k_{\mathrm{x}}}{d \delta}=\frac{2 M}{k_{\mathrm{x}}} \sin ^{2} \frac{i}{2} \cos \left(K_{\mathrm{x}}+2 \Omega\right) \text {, } \\
& \frac{d K_{\mathrm{x}}}{d \Omega}=-\frac{2}{k_{\mathrm{x}}} \sin ^{2} \frac{i}{2} \sin \left(K_{\mathrm{x}}+2 \Omega\right) \text {, } \\
& \frac{d \cdot \log k_{y}}{d \Omega}=\frac{M}{k_{y}}\left[2 \sin ^{2} \frac{i}{2} \cos \varepsilon \sin \left(K_{y}+2 \Omega\right)+\sin i \sin \varepsilon \sin \left(K_{y}+\Omega\right)\right] \text {, } \\
& \frac{d K_{\mathrm{y}}}{d \Omega}=\frac{1}{k_{\mathrm{y}}}\left[2 \sin ^{2} \frac{i}{2} \cos \varepsilon \cos \left(K_{y}+2 \Omega\right)+\sin i \sin \varepsilon \cos \left(K_{y}+\Omega\right)\right] \text {, } \\
& \frac{d \cdot \log k_{\mathrm{z}}}{d \Omega}=\frac{M}{k_{\mathrm{z}}}\left[2 \sin ^{2} \frac{i}{2} \sin \varepsilon \sin \left(K_{\mathrm{z}}+2 \Omega\right)-\sin i \cos \varepsilon \sin \left(K_{\mathrm{z}}+\Omega\right)\right] \text {, } \\
& \frac{d K_{z}}{d \Omega}=\frac{1}{k_{z}}\left[2 \sin ^{2} \frac{i}{2} \sin \varepsilon \cos \left(K_{z}+2 \Omega\right)-\sin i \cos \varepsilon \cos \left(K_{z}+\Omega\right)\right],
\end{aligned}
$$

where M denotes the modulus of common logarithms. In computing the variations of $\log k_{\mathrm{x}}, \log k_{\mathrm{y}}$, and $\log k_{z}$, $\Delta \varepsilon$ and $\Delta \Omega$ or $\Delta \psi$ must be expressed in parts of the radius.

In computing the aberration, the constant of Struve should be used. The aberration time is then given by the formula, Δ being the distance of the planet from the Earth.
\log. aberration time in days $=7.76052+\log . \Delta$.

INTRODUCTION.

The parallax is given by the formula

$$
\text { parallax }=\frac{8^{\prime \prime} .848}{\Delta}
$$

and the semi-diameter by the formula

$$
\text { semi-diameter }=\frac{8^{\prime \prime} .546}{\triangle}
$$

In the computation of the perturbations produced by Venus on other planetary bodies, the values of the inclination of the orbit and the longitude of the ascending node referred to the ecliptic and equinox of some fixed date are needed; also the reduction of the longitude to this ecliptic and equinox is wanted. If the current time be $1850+t$, and the fixed date $1850+t_{0}$, and ψ denote the general precession from 1850 to $1850+t$, and λ denote the orbit longitude, and ψ_{0} denote the general precession from 1850 to $1850+t_{0}$, the formulæ, we are in quest of, are

$$
\begin{aligned}
i_{\mathrm{o}} & =i-0^{\prime \prime} .06634\left(t-t_{\mathrm{o}}\right) \\
\delta_{\mathrm{o}} & =\delta-\left(\psi-\psi_{\mathrm{o}}\right)+7^{\prime \prime} .8616\left(t-t_{\mathrm{o}}\right) \\
\lambda_{\mathrm{o}} & =\lambda-\left(\psi-\psi_{\mathrm{o}}\right)-0^{\prime \prime} .01382\left(t-t_{\mathrm{o}}\right)
\end{aligned}
$$

Or, with sufficient accuracy for our purpose,

$$
\begin{aligned}
i_{0} & =3^{\circ} 23^{\prime} 35^{\prime \prime}+0^{\prime \prime} .03814 t_{\mathrm{o}}-0^{\prime \prime} .02820\left(t-t_{0}\right) \\
\delta_{0} & =75^{\circ} 19^{\prime} 53^{\prime \prime}+32^{\prime \prime} .515 t_{\mathrm{o}}-9^{\prime \prime} .882\left(t-t_{\mathrm{o}}\right) \\
\lambda_{\mathrm{o}} & =\lambda-50^{\prime \prime} .273\left(t-t_{\mathrm{o}}\right)
\end{aligned}
$$

In the American Ephemeris the heliocentric coördinates of the planets are given, for the purpose of the computation of special perturbations, referred to the ecliptic and equinox of the $2400000^{\text {th }}$ day of the Julian period, and of every $5000^{\text {th }}$ day thereafter. If d denote the number of days between the epoch and the current time, (it will be negative when the current time is before the epoch,) the formulæ for the computation of these coördinates, for Venus, are ;-

Epoch $=2400000^{\text {th }}$ day of the Julian Period $=1858$, Nov. 16.
$\lambda_{0}=\lambda-0^{\prime \prime} .13763 d$,
$x_{0}=[9.99929] r \sin \left(\lambda_{0}+89^{\circ} 58^{\prime} 32^{\prime \prime}\right)$,
$y_{\circ}=[9.99995] r \sin \left(\lambda_{\circ}+0^{\circ} 1^{\prime} 29^{\prime \prime}\right)$
$z_{\circ}=[8.7722] r \sin \left(\lambda_{0}+284^{\circ} 35^{\prime} 18^{\prime \prime}+0^{\prime \prime} .027 d\right)$.
Kpoch $=2405000^{\text {th }}$ day of the Julian Period $=1872$, July 25.
$\lambda_{0}=\lambda-0^{\prime \prime} .13764 d$,
$x_{0}=[9.99929] r \sin \left(\lambda_{0}+89^{\circ} 58^{\prime} 32^{\prime \prime}\right)$,
$y_{\circ}=[9.99995] r \sin \left(\lambda_{0}+0^{\circ} 1^{\prime} 28^{\prime \prime}\right)$,
$z_{\circ}=[8.7722] r \sin \left(\lambda_{0}+284^{\circ} 27^{\prime} 53^{\prime \prime}+0^{\prime \prime} .027 d\right)$.
Epoch $=2410000^{\text {th }}$ day of the Julian Period $=1886$, Apr. 3.
$\lambda_{0}=\lambda-0^{\prime \prime} .13765 d$,
$x_{0}=[9.99928] r \sin \left(\lambda_{0}+89^{\circ} 58^{\prime} 33^{\prime \prime}\right)$,
$y_{0}=[9.99995] r \sin \left(\lambda_{0}+0^{\circ} 1^{\prime} 27^{\prime \prime \prime}\right)$
$z_{0}=[8.7723] r \sin \left(\lambda_{0}+284^{\circ} 20^{\prime} 28^{\prime \prime}+0^{\prime \prime} .027 d\right)$.
Epoch $=2415000^{\text {th }}$ day of the Julian Period $=1899$, Dec. 11.
$\lambda_{0}=\lambda-0^{\prime \prime} .13766 d$,
$x_{\circ}=[9.99928] r \sin \left(\lambda_{\circ}+89^{\circ} 58^{\prime} 34^{\prime \prime}\right)$,
$y_{0}=[9.99995] r \sin \left(\lambda_{0}+0^{\circ} 1^{\prime} 26^{\prime \prime}\right)$
$z_{\circ}=[8.7723] r \sin \left(\lambda_{0}+284^{\circ} 13^{\prime} 3^{\prime \prime}+0^{\prime \prime} .027 d\right)$.
Epoch $=2420000^{\text {th }}$ day of the Julian Period $=1913$, Aug. 20.
$\lambda_{0}=\lambda-0^{\prime \prime} .13766 d$,
$x_{\circ}=[9.99928] r \sin \left(\lambda_{0}+89^{\circ} 58^{\prime} 34^{\prime \prime}\right)$,
$y_{0}=[9.99995] r \sin \left(\lambda_{0}+0^{\circ} 1^{\prime} 24^{\prime \prime}\right)$,
$z_{0}=[8.7723] r \sin \left(3^{\circ}+284^{\circ} 5^{\prime} 37^{\prime \prime}+0^{\prime \prime} .027 d\right)$.

INTRODUCTION.

In the above expressions of the rectangular coordinates, the logarithms of the constant factors, inclosed in \rfloor, have been given, instead of the constants themselves; and the perturbations of the latitude have been negleeted.

Table I. contains the longitudes of the prineipal Ohservatories from Washington, as given by Dr. Gould in the American Lphemeris for 1870. West longitudes are considered as positue.

Tables II., III., and IV. are tables of Λ stronomical Dites in mean solar days, from which any date, given in the usual form of reference to the Christian era, may be reduced to its value in days and decimals of a day of the Iulian period. They are taken from Pemes's Lamar 'Tables. By adding the days given for the current century to the days of the previons centemial date, we obtain the number of days elapsed of the Julian Period for Jun. 0^{1} Mean Noon in common years and for lan. $1^{\text {d }}$ in lissextile years. 'To this should be added the days and decimals of a day for fractional parts of a year given in Tables III, and IV.

Table V. contains the periods of the various arguments, and multiplies of them, which it is sometimes necessary to subtract, to render the arguments less than their periods.

Table VI. contains for Washington Mam Noon of Jan. 0^{d} in common years, Jan. 1^{11} in bissextite years, of each year from 1750 to $\mathbf{1 9 5 0}$, the following quantities:

$$
\begin{aligned}
L= & 214^{\circ} 18^{\prime} 18^{\prime \prime} .32-0^{\circ} 47^{\prime} 40^{\prime \prime} .00+2106691^{\prime \prime} .6218 t \\
& +0^{\prime \prime} .0001131 t^{2}+0^{\prime \prime} .282 \sin \left(1 l^{\prime \prime \prime}+3 l^{\prime}-7 l^{\prime \prime \prime}+147^{\circ} .1\right)
\end{aligned}
$$

the integer res, the Argunents I.-XIV., the logarithm of the sine of the inelination, and the supplement to 360° of the moan longitude of the ascending node. The term $0^{\circ} 47^{\prime} 40^{\prime \prime} .00$ in L is equivalent to the sum of all the constants which have been added to the quantities in the tables of the equation of the eentre, and of the periodic perturbations of the orbit longitude, in order to render them always positive.

Table VII. contains for every day of the year, the motion of the mean longitude, and the motion of the sup. plement of the node, and the fraction of the year from the begiming of the year.

Table VIII. contains the motion of L for hours. minutes and seconds; also for tenths, hundredths and thousandths of a day.

Table 1X. contains the factor of a small correction to be applied to L, on account of the inequality of its motion. The quantity taken from this table must be multiplied by the fraction of the year obtained from the preceding table, and the product added to L.

Table X. contains the Lquation of the Centre for every tenth of a day of Argument I. Its secular variation, corresponding to the fractional part of the anomalistic period, is included in the numbers of the table. The constant alded, to render all the numbers positive, is $47^{\prime} 3^{\prime \prime} .50$.

Tables Xl,-XXV. contain the perturbations of the Orbit Longitude. They are given in units of hundredths of a sccond of arc.

And particularly,-Table XI. contains the factor of the secular perturbation for cach day of Argument I. The quantity taken from this table must be multiplied by the integer m. The logarithm of the factor is also given, as some may prefer making the multiplication by the aid of logarithms.
'Table XII. contains the factor of that part of the secular perturbation which varies as the square of the time. It is given nt intervals of 4 days of the Argument I. The quantity taken from this table, must be multiplied by $\left(\frac{1 \mathrm{Im}}{100}\right)^{2}$. The logarithm of the factor is also given. The formula for the numbers of this table is

$$
+2.01 \sin M
$$

Table XIII. contains the long period term, due to the aetion of the Earth,

$$
+2^{\prime \prime} .820 \sin \left(8 l^{\prime}-13 l^{\prime \prime}+227^{\circ} 58^{\prime}\right)
$$

It is given at intervals of 2 years of the Argument II. The constant added to render all the numbers positive is $\mathfrak{2}^{\prime \prime} .82$.
Table XIV. contains the terms

$$
\begin{aligned}
& +\mathbf{1}^{\prime \prime} .168 \sin \left(l^{\prime \prime}-3 l^{\prime \prime \prime}+117^{\circ} 56^{\prime}\right) \\
& +0^{\prime \prime} .082 \sin \left(2 l^{\prime}-6 l^{\prime \prime \prime}+74^{\circ} .8\right)
\end{aligned}
$$

due to the action of Mars. They are given at intervals of 200 days of the Argument III. The constant added is $\mathbf{1}^{\prime \prime} . \mathbf{1 5}$.
Table XV, contains the term

$$
+1^{\prime \prime} \cdot 495 \sin \left(5 l^{\prime \prime}-3 l^{\prime}+198^{\circ} 24^{\prime}\right)
$$

due to the action of the Earth. It is given at intervals of 40 days of the Argument IV. 'The constant added is $\mathbf{l}^{\prime \prime} .50$

INTRODUCTION.

Fable XVI. contains the terms

$$
\begin{aligned}
& +3^{\prime \prime} .515 \sin \left(9 l^{\prime}-3 l^{\prime \prime}+268^{\circ} 7^{\prime} .5\right) \\
& +0^{\prime \prime} .188 \sin \left(4 l^{\prime}-6 l^{\prime \prime}+340^{\circ} .7\right)
\end{aligned}
$$

due to the action of the Earth. They are given at intervals of 16 days in the Argument V. The constant added is $3^{\prime \prime} .60$.

Table XVII. contains the terms

$$
\begin{array}{ll}
-{ }^{\prime \prime} .981 \sin \left(l^{\prime}-l^{\prime \prime}\right) & +0.067 \sin \left(7 l^{\prime \prime}-7 l^{\prime \prime}\right) \\
-11.489 \sin \left(2 l^{\prime}-2 l^{\prime \prime}\right) & +0.035 \sin \left(8 l^{\prime \prime}-8 i^{\prime \prime}\right) \\
+7.260 \sin \left(3 l^{\prime}-3 l^{\prime \prime}+0^{\circ} 7^{\prime} .6\right) & +0.019 \sin \left(9 l^{\prime}-9 l^{\prime \prime}\right) \\
+1.050 \sin \left(4 l^{\prime}-4 l^{\prime \prime \prime}+0^{\circ} .10^{\prime}\right) & +0.013 \sin \left(10 l^{\prime}-10 l^{\prime \prime}\right) \\
+0.335 \sin \left(5 l^{\prime}-5 l^{\prime \prime}+1^{\circ} .5\right) & +0.007 \sin \left(11 l^{\prime}-11 l^{\prime \prime}\right) \\
+0.143 \sin \left(6 l^{\prime}-6 l^{\prime \prime \prime}\right) & +0.004 \sin \left(12 l^{\prime}-12 l^{\prime \prime}\right) \\
& \\
& +0.003 \sin \left(13 l^{\prime}-13 l^{\prime \prime}\right)
\end{array}
$$

due to the action of the Earth. They are given at intervals of 2 days in the Argument Vl. The constant added is $16^{\prime \prime}$. 65 .

Table XVIII contains the term

$$
+1^{\prime \prime} .620 \sin \left(4 l^{\prime}-5 l^{\prime \prime}+268^{\circ} 24^{\prime} .5\right)
$$

due to the action of the Earth. It is given at intervals of 4 days in the Argument VII. The constant added is $\mathbf{1}^{\prime \prime} .62$.
Table XIX. contains the term

$$
+0^{\prime \prime} .657 \sin \left(2 l^{\prime}-3 l^{\prime \prime \prime}+339^{\circ} 44^{\prime}\right)
$$

due to the action of Mars. It is given at intervals of 4 days in the Argument VIII. The constant added is $0^{\prime \prime} .66$.
Table XX. contains the terms

$$
\begin{array}{ll}
-2^{\prime \prime} .959 \sin \left(l^{\prime}-l^{\text {iv }}+0^{\circ} 31^{\prime}\right) & +0^{\prime \prime} .041 \sin \left(3 l^{\prime}-3 l^{\text {iv }}\right) \\
+0^{\prime \prime} .880 \sin \left(2 l^{\prime}-2 l^{\text {iv }}\right) & +0^{\prime \prime} .007 \sin \left(4 l^{\prime}-4 l^{\text {iv }}\right)
\end{array}
$$

due to the action of Jupiter. They are given at intervals of 2 days in the Argument IX. The constant added is $3^{\prime \prime} .35$.
Table XXI. contains the perturbations due to the action of Mercury. The formula has already been given at page 3. The tabulation is to double entry, the horizontal argument being l., and the vertical argument X., which remains constant during a period of Argument I. When Argument I. surpasses the limit of the table, $224^{4} .7$ should be subtracted from it, and 33.26 should be added to Argument X .; and if this last surpasses 60,60 may be subtracted from it. The constant added to the numbers, to render them positive, is $0^{\prime \prime} .85$.

Table XXII. contains the residnal perturbations due to the action of the Earth. The analytical expression is that given on page 3 with the omission of the terms which have been tabulated in Tables XIII., XV., XV1., XVIl., and XVIII. The tabulation is to double entry, the horizontal argument being I., and the vertical argument XI., which remains constant during a period of Argument I. When 224.7 is subtracted from Argument 1., 147.64 should be added to Argument XI.; and if this last exceeds 240,240 may be subtracted from it. The constant added to the numbers of this table is $1^{\prime \prime} .40$.

Table XXIII. contains the residual perturbations due to the action of Mars. The analytical expression is that given at page 4, with the omission of the terms which have been tabulated in Tables XIV. and XIX. The tabulation is to double entry, the horizontal argument being I., and the vertical argument XII., which remains constant during a period of Argument I. When $224^{d} .7$ is subtracted from Argument I., 19.6 must be added to Argument X11.; and if this last exeeeds 60,60 may be subtracted from it. The constant added to the numbers of this table is $0^{\prime \prime} .15$.

Table XXIV. contains the residual perturbations due to the action of Jupiter. The analytical expression is that given at page 4, with the omission of the terms which have been tabulated in Table XX. The tabulation is to double entry, the horizontal argument being I., and the vertical argument XIII., which remains constant during a period of Argument I. When $224^{4.7}$ is subtracted from Argument 1., 3.11 must be ạdded to Argument XIII.; aud if this last exceeds 60,60 may be subtracted from it. The constant added to the numbers of this table is $2^{\prime \prime} .35$.
'Iable XXV. contains the perturbations due to the action of Saturn. The analytical expression is given on page 4. 'The tabulation is to donble entry, the horizontal argunent being I., and the vertical argument XIV., which

INTRODUCTION.

remains constant during a period of Argument 1. When $224^{4} .7$ is subtracted from Argument I., 0.8 must be added to Argument XIV., and if this last exceeds 36, 36 may be subtracted from it. The oonstant added to the numbers of this table is $0^{\prime \prime} .40$.

The preceding tables give tho Orbit Longitude of Venus referred to the mean equinox of date.
Table XXVI. contains the common logarithm of the Elliptic Radius Vector, for every tenth of a day of Arganent I. Its secular variation, corresponding to the fractional part of the anomalistic period is included. The formula tabulated is

$$
\begin{aligned}
& 9.85934275-0.0000257-0.00297187 \cos M \\
& -0.00001525 \cos 2 M-0.00000010 \cos 3 M \\
& +\frac{\text { Arg. I }-71^{\mathrm{d}} .7}{224^{\mathrm{d}} .7} \text { (quantity from Tab. XXVII). }
\end{aligned}
$$

The term 0.0000257 is equivalent to the sum of all the constants, which have been added in the tables of the periodic perturbations, in order to render the numbers always positive.

Tables XXVII.-XXXV. contain the perturbations of log. r; they are given uniformly in units of the eighth decimal ; and specially :-

Table XXVII. contains the factor of the secular perturbations for each day of Argument I. The quantity taken from this table must be multiplied by the integer \mathbf{m}. The logarithm of the factor is also given.

Table XXVIII contains the factor of that part of the secular perturbation which varies as the square of the time. It is given for intervals of 4 days in the Argument I. The quantity taken from this table must be multiplied by $\left(\frac{\mathrm{m}}{100}\right)^{2}$. The formula for the numbers of this table is $-2.1 \cos M$.

Table XXIX. contains the terms

$$
\begin{array}{ll}
-18.6 & -23.0 \cos \left(6 l^{\prime}-6 l^{\prime \prime}\right) \\
+228.2 \cos \left(l^{\prime}-l^{\prime \prime}\right) & -11.5 \cos \left(7 l^{\prime}-7 l^{\prime \prime}\right) \\
+998.6 \cos \left(2 l^{\prime}-2 l^{\prime \prime \prime}\right) & -6.4 \cos \left(8 l^{\prime}-8 l^{\prime \prime}\right) \\
-841.8 \cos \left(3 l^{\prime \prime}-3 l^{\prime \prime}+0^{\circ} 8^{\prime}\right) & -3.5 \cos \left(9 l^{\prime}-9 l^{\prime \prime}\right) \\
-145.2 \cos \left(4 l^{\prime \prime}-4 l^{\prime \prime}\right) & -2.6 \cos \left(10 l^{\prime}-10 l^{\prime \prime}\right. \\
-52.2 \cos \left(5 l^{\prime}-5 l^{\prime \prime}+0^{\circ} 20^{\prime}\right) &
\end{array}
$$

due to the action of the Earth. The constant added is 1594.
Table XXX. contains the term

$$
+162.2 \cos \left(4 l^{\prime \prime}-5 l^{\prime \prime}+88^{\circ} 52^{\prime}\right)
$$

due to the action of the Earth. The constant added is $\mathbf{1 6 2}$.
Table XXXI. contains the terms

$$
\begin{array}{ll}
-19.2 & -133.0 \cos \left(2 l^{\prime}-2 l^{\mathrm{iv}}\right) \\
+299.2 \cos \left(l^{\prime}-l^{\mathrm{iv}}+0^{\circ} 20^{\prime}\right) & -7.0 \cos \left(3 l^{\prime}-3 l^{\mathrm{iv}}\right)
\end{array}
$$

due to the action of Jupiter. The constant added is 445.
Table XXXII. contains the perturbations due to the action of Mercury. The formula has already been given on page 4. The constant added is 34 . The tabulation is to double entry, and the remarks which have been made with regard to Table XXI. also apply here.

Table XXXIII. contains the residual perturbations due to the action of the Earth. The formula is that given at page 4 with the omission of the terms which have been tabulated in Tables XXIX. and XXX. The constant added is 150 . The tabulation is to double entry, and the remarks made with regard to Table XXII. apply here.

Table XXXIV. contains the perturbations due to the action of Mars. The formula has been given at page 5 . The constant added is 80 . The tabulation is to double entry, and the remarks made with regard to Table XXIII apply here.

Table XXXV. contains the residual perturbations due to the action of Jupiter. The formula is that given on page 5, when the terms tabulated in Table XXXI. are omitted. The constant added is 80 . The tabulation is to double entry, and the remarks made with regard to Table XXIV. apply here.

Table XXXVI. contains the perturbations due to the action of Saturn. The formula has been given at page 5 .

INTRODUCTION.

The constant added is $\mathbf{2 5}$. Tho tabulation is to double entry, and the remarks made with regard to Table XXV apply here.

These tables (XXVI.-XXXVI.) suflice for finding the lugarithm of the radius vector.
Tables XXXVII. and XXXVIII. contain the perturbations of the latitude expressed in units of hundredths of a second of are.

Table XXXVIl. contains the perturbations due to the action of the Larth. The formula has been given at page 5. The constant added is $0^{\prime \prime}$.62. The tabulation is to double entry, and the remarks made with regard to Table XXIl. apply here.

Table XXXVIII. contains the perturbations due to the action of Jupiter. The formula has been given at page 6. The constant added is $0^{\prime \prime} .21$. The tabulation is to double entry, and the remarks made with regard to Table XXIV. apply here.

The latitude of Venus is then obtained in the following way. The elliptic latitude is obtained from the formula $\log \sin ($ clliptic lat. $)=\log \sin i+\log \sin \left[\right.$ orbit long. $\left.+\left(360^{\circ}-\Omega\right)\right]$, is which the orbit longitude is corrected for perturbations. Then the true latitude is given by the formula
True Latitude $=$ Elliptic Latitude + the sum of the quantities derived from Tables XXXVII. and XXXVIII. $-0^{\prime \prime} 83$.*
Table XXXIX. contains, for the beginning of each year between $1750-1950$, the valucs of the quantitics K_{x}, $K_{y}, K_{z}, \log k_{x}, \log k_{y}, \log k_{z}$ and the Arguments XV. and XVI. on which depend respectively the lunar and solar nutation.

The beginning of the ycar for Arguments XV. and XVI. nust be understood as being the Washington mean noon of Jan. 0, (Jan. 1 in bissextile years,). But the other six quantities of this Table are given for this time of the beginning ol' the year only for 1850 , and backwards and forwards from this epoch they proceed by intervals of a tropical year. This modification has been made, in order that the mution of these quantities for the fractional part of the year inight be included in 'Fable XL1. From each of the quantities K_{x}, K_{y}, and K_{z}, there has been subtracted the constant $20^{\prime \prime} .00$, and from $\log k_{y}$ the constant 0.0000089 , and from $\log k_{z}$ the constant 0.0000560 . These constants are equivalent, in each ease, to the sum of the constants which have been added to the quantities in Tables XL. and XLI. to render them positive. Moreover to K_{x} laas been added the small correction, due to lunar nutation, over and above the lunar nutation itself; and to $\log k_{x}$ has been added the small correction due to lunar nutation.

Table XL. contains the variations of the quantities $K_{x}, K_{y}, K_{z}, \log k_{y}$, and $\log k_{z}$ which are produced by lunar nutation. The two last are expressed in units of the seventh decimal place. These quantities have all been conputed for the epoch 1850 , and are subject to small secular changes, which, except in the case of the correction of K_{z}, are barely sensible in the course of a century. The variation of $J K_{z}^{r}$ in a century has therefore been given in the adjacent column.

The constants which have been added to render the numbers positive, are $18^{\prime \prime} .00$ to $\Delta K_{x}, 18^{\prime \prime} .00$ to ΔK_{y}^{r}, $17^{\prime \prime} .00$ to $\Delta K_{z}, 88$ units to $\Delta \log k_{y}, 430$ units to $\Delta \log k_{z}$. The lunar nutation of the equinox can be obtained from the value of ΔK_{x} by subtracting $18^{\prime \prime} .00$. The formulæ for the quantities tabulated are

$$
\begin{aligned}
& \Delta K_{x}=18^{\prime \prime} .00+\Delta \xi^{\prime} \\
& \Delta K_{y}=18^{\prime \prime} .00+1.0044 \Delta \psi^{\prime}+0.0690 \Delta \varepsilon \\
& \Delta K_{z}=17^{\prime \prime} .00+0.9498 \Delta \psi^{\prime \prime}+0.3323 \Delta \varepsilon
\end{aligned}
$$

sec. var. of $\Delta K_{z}=+0.0030 \Delta 3$, $\Delta \log k_{y}=88+0.5469 \Delta \psi-9.480 \Delta \varepsilon$, $\left.\Delta \log k_{x}=430-2.534 \Delta \psi+45.71\right\lrcorner \varepsilon$,
when for $\Delta \psi$ and $\Delta \varepsilon$ are substituted those parts of the values of these quantities given on page 6 which depend in $\delta \mathbb{C}$. The part of ΔK_{x} which has been applied to K_{x} in Tibble XXX1X is

$$
+0.0015 \perp
$$

und the value of $\Delta \log k_{x}$ which has been added to k_{x} in the sume Table is

$$
-0.0181\lrcorner \psi
$$

[^2]
INTRODUCTION.

Table $\mathcal{N 1} 1$. contains the variations of the quantities $K_{x}, K_{y}, K_{z}, \log k_{y}$, and $\log _{g}{k_{z}}_{z}$ which are produced by solar nutation, angmented by the motion of the quatities in the fractional prort of the tropical year. $\perp \log k_{y}$, and J log l_{i}, are expressed in units of the seventh decimal phace. The yuantities have been computed for the epoch 1850. The sceular variation $\lrcorner K_{z}$, becoming sensible in the course of a eentury, is given in the atjacent columu. The last column contains the solar mutation of the equinox. 'The constants which have been added are $\mathbf{Q}^{\prime \prime} .00$ to $\lrcorner K_{x}, 2^{\prime \prime} .00$ to $\lrcorner K_{y}, 3^{\prime \prime} .00$ to $\lrcorner K_{z}, 1$ unit to $\lrcorner \log k_{y}$, and 130 units to $\lrcorner \log k_{z}$. The formule for the quantities tabulated are,

$$
\begin{aligned}
& د K_{x}=2^{\prime \prime} .00+0^{\prime \prime} .05=+\perp \psi^{\prime}, \\
& \lrcorner K_{y}=2^{\prime \prime} .00+0^{\prime \prime} .126 \div+\right\rfloor 4^{\prime}+0^{\prime \prime} .038 \sin \left(2 \odot+98^{\circ} .2\right) \text {, } \\
& \left.\Delta K_{2}=3^{\prime \prime} .00-1^{\prime \prime} .864 \div+\right\rfloor \psi^{\prime}+0^{\prime \prime} .194 \sin \left(2 \odot+71^{\circ} .0\right) \text {, } \\
& \text { sec. var. } \perp K_{z}^{\prime}=+0^{\prime \prime} .019-\text {, } \\
& \lrcorner \log k_{y}=1+22.145 \div+5.3 \sin \left(2 \odot+263^{\circ} .5\right) \text {, } \\
& 4 \log k_{z}=130-103.110 t+25.4 \sin \left(2 \odot+83^{\circ} .8\right) \text {, }
\end{aligned}
$$

τ denoting the fraction of the year, and the value of $\lrcorner \xi^{\text {b }}$ being

$$
-1^{\prime \prime} .251 \sin 2 \odot
$$

The proper values of K_{x}, K_{y}^{r} \&c., needed for computing the values of x, y, und z referred to the true equinox and equator of date, are therefore obtained, by adding the quantities obtained from 'rables XL. and XLI. to the quantities given in Table XXXIX. for the beginning of the year. And there is no need of interpotation in this last Tible, except for $\log . k_{x}$, which however is nearly constant.

Table XLLII. contains the values of the factors by which the perturbation of the latitude, obtained from Tables XXXVII. and XXXVIII. by subtracting $0^{\prime \prime} .83$, and expressed in hundredths of a second of are, must be multiphed, in order to ubtain the corresponding corrections of the coürdinates x, y, and z expressed in units of the seventh lecimal place. 'The Argument is the Orbit Longitude.

Table XLILI. contains the Parallax and Semidiameter. The Argument is the logarithm of the planet's distance from the Earth. The formula have already been given at page 8. The value of the semidiameter here given has still need to be increased by a constant quantity for the effect of irradiation, but varying for different observers and instruments, when the reduction of observations is in question.

Tables XLIV. and XLV. give the means of obtaining the mean longitude and arguments for a time not con. tained between the limits $1750-1950$.

Table XLIV. contains the quantities which must be added to the quantities of the $19^{u_{1}}$ century contained in Tables VI. and XXXIX., to obtain the mean longitude and arguments for the beginning of the corresponding year of any other century between 300 B . C. and 2300 A . D. The numbers in the columns headed $t^{\prime}-50$, must be multiplied by $\left(t^{\prime}-50\right), t^{\prime}$ denoting the number of years from the beginning of the century, and the products added to the numbers of the preceding column. In the case of $\log \sin i$, the numbers of the column headed $t^{\prime}-50$ must be understood as being in units of the last decimal place of $\log \sin i$. In using this Table for dates which are B. C. the given year must be conceived as increased algebraically by a unit. It will be noticed that two lines occur for the argument 1500: the first is for dates which are according to the Julian calendar (Old Style), and the sccond for those which are according to the Gregorian ealendar (New Style). The Julian calendar ends with Oct. 4, 1582 ; and the Gregorian begins with Oct. 15, 1582.
'Table XLV. contains the values of the inequality of the longitude to long period,

$$
+0^{\prime \prime} .282 \sin \left(4 l^{\prime \prime \prime}-7 l^{\prime \prime}+3 l^{\prime}+147^{\circ} .1\right)
$$

and of certain multiples of the period of the argument in years. As this inequality has been added to the numbers of the column headed L in Table VI., we must enter the Table first with the argument equal to the corresponding year of the $19^{\text {th }}$ century and take the equation with the opposite sign; and next with the argument equal to the year of the given date, and take the corresponding equation: then both these quantities must be added to the L resulting from the previous 'rables. If the year of the given date is not found in the limits of this Table, that multiple of the period of the argument, which is requisite, must be added to it or subtracted from it.

Table NLVI. contains the Reduction of the Orbit Longitude to the ecliptic. The Argument is the "Orbit Longitude $+360^{\circ}-\Omega "$, or this angle diminished by 180° when it exceeds 180°. It is given for every 10^{\prime} of the

INTRODUCTION.

Argument. The arraugement of the Table will be easily understoed. The Table is constructed for the epoch 1850.0, and the variation in a century, of the numbers tabulaterl, is given in the last column but one, for every degree. The formula for the reduction to the ecliptic is

$$
-180^{\prime \prime} .94 \sin 2\left(2+360^{\circ}-8\right)+0^{\prime \prime} .079 \sin 4\left(2+360^{\circ}-\delta\right)
$$

and for its secular variation

$$
-0^{\prime \prime} .113 \sin 2\left(\lambda+360^{\circ}-8\right)
$$

DIRECTIONS FOR THE USE OF TIIE TABLES.

The given time must be reduced to Washington Mean Time lyy the aid of Table I. The hours, minutes and seconds cin then be redueed to the equivalent decimal part of a day by Table IV.; and the whole number of days which have elapsed since the begiming of the year can be found from Table III.

The values of the mean longitude L, mand the fourteen arguments of the perturbations are taken from Table VI. for the given year, if it lies between 1750 and 1949. If we do not want the heliocentric longitude and latitude of the planet, but intend to compute the geocentric coürdinates by the Gaussian process, the quantities, in the columns of this Table, headed Log. $\sin i$ and $360^{\circ}-\Omega$, will not be needed.

From Table VII. will be obtained the motion of L from the beginning of the year to the given day; and also the fraction of the year; from 'lable IX. the factor which must be multiplied by the fraction of the year and the product added to L; and from Table VIII, the motion of L for hours, minutes and seconds, or for decimal parts of a day. The quantities obtained from Tables VII.-IX. being added to the L from Table VI., we obtain the tabular mean longitude of the planet for the given date.

To Arguments I.-IX., II. excepted, we add the number of days and decimal part of a day which have elapsed since the beginning of the year; to Argument II. we add the fractional part of the year. If any argument thus obtained, exceed its period given in Table V., we subtract as many multiples of the period as may be necessary to reduce it below its period. To the Argument an, we add as many units, as we have subtracted multiples of its period from Argument I., and to Arguments X.-XIV, we add severally the same number of multiples of the numbers $33.26,147.64,19.6,3.11$, and 0.8 . The values of these multiples are given in Table V. If any Argument X.-XIV, exceed its period given in Table V., we may subtract from it the largest contained multiple of its period.

The Equation of the Centre is obtained from Table \boldsymbol{X}. with the Argument I. The perturbations of the longitude in hundredths of a second of are will be obtained with the proper arguments from Tables XI.-XXV. Tho number obtained from Table XI. must be multiplied by the integer m, and the number from Table XII. by the factor $\binom{\mathrm{m}}{\mathrm{t} 00}^{2}$; the logarithms of the numbers in these two tables have also been given in the adjacent column, in order that, if preferred, the multiplication may bo performed by their aid. The Equation of the Centre and these perturbations being added to the mean longitude, we obtain the orbit longitude referred to the mean equinox of date.

The Logarithm of the Elliptic Radius Vector is obtained from Table XXVI, with the Argument I; and its perturbations, in units of the eighth decimal, with the proper arguments from Tables XXVII.- XXXVI. The number obtained from Table XXVII. must be multiplied by the integer rat, and the number from Table XXVIII. by the factor $\binom{\text { nin }}{100}^{2}$; the logarithm of the number is also given in Table XXVII., in order that, if preferred, the multiplication may be performed by its aid. If the sum of the numbers thus obtained from Tables XXVII.-XXXVI. be divided by 10, and the quotient be added to the last figures of the quantity obtained from Table XXVI., we shall have the common logarithm of the radius vector of the planet.

If we diminish by 83 the sum of the numbers, obtained from Tables XXXVII. and XXXVIII, with the proper arguments, we shatl have, in hundredths of a second of are, the perturbations of the latitude.

The values of K_{x}, K_{y}, \&cc, and Arguments XV. and XVl. are to be taken from Table XXXIX, for the given year. And to Arguments XV. and XVI. should be added the number of days and the decimal part of a day elapsed since the beginning of the year; and if Argument XV. exceed its period, given in Table V., the period

INTRODUCTION.

should be subtracted from it. The corrections of $K_{x}, K_{y}, \& c$. , are obtained from Tables XL. and XLI., with the respective Arguments XV. and XVI. In the case of K_{z} in each Table, the variation in 100 years, given in the adjacent column, must be taken into account; we multiply it by the fractional part of the century elapsed since 1850 , and add the product to the quantity obtained from the preceding column. These corrections being added to the values of K_{x}, K_{y}, \&c., obtained without interpolation from Table XXXIX., we have the proper values of these quantities for computing the rectangular coördinates of the planet referred to the true equinox and equator of date.

If r denote the radius vector, and λ the orbit longitude of the planet, these coördinates are obtained by the formulæ

$$
\begin{aligned}
& x=k_{\mathrm{x}} r \sin \left(\lambda+K_{\mathrm{x}}\right), \\
& y=k_{\mathrm{y}} r \sin \left(\lambda+K_{y}\right), \\
& z=k_{\mathrm{z}} r \sin \left(\lambda+K_{z}\right) .
\end{aligned}
$$

The values of the coördinates thus found need correction for the effect of perturbations in latitude. To obtain these corrections we multiply the perturbations of the latitude, expressed in hundredths of a second of arc, respectively by the three factors obtained from Table XLII. with the argument λ, and the products are the respective corrections of the coördinates expressed in units of the seventh decimal.

If X, Y and Z denote the coördinates of the Sun referred to the same system of planes as x, y and z, the geocentric right ascension α, declination δ, and distance from the Earth Δ, of the planet, are obtained from the equations,

$$
\begin{aligned}
& \Delta \cos \alpha \cos \delta=x+X \\
& \Delta \sin \alpha \cos \delta=y+Y \\
& \Delta \sin \delta \quad=z+Z
\end{aligned}
$$

The α and δ thus obtained have still to be corrected for aberration, if we desire the apparent position of the planet. The aberration time T in days is given by the equation

$$
\log T=7.76052+\log \Delta ; \text { or, } T=.005761 \Delta
$$

If $\frac{d \alpha}{d t}$ and $\frac{d \delta}{d t}$ denote the daily variation of α and δ at the given date, the corrections for aberration are

$$
\begin{aligned}
& \Delta \alpha=-T \frac{d \alpha}{d t} \\
& \Delta \delta=-T \frac{d \delta}{d t}
\end{aligned}
$$

Finally, from Table XLIII., we can obtain, with the argument $\log \Delta$, the parallax and semidiameter of the planet.

If we desire to have the heliocentric longitude and latitude, we take from Table VI. the values of \log. $\sin i$ and $360^{\circ}-\Omega$ for the given year. The motion of $360^{\circ}-\Omega$ for the fraction of the year is given in Table VII.; that of $\log \sin i$ can readily be inferred from Table VI. Then if the latitude be computed from the equation,

$$
\log \sin \text { lat. }=\log \sin i+\log \sin \left(\lambda+360^{\circ}-8\right)
$$

and the perturbations of the latitude, which have already been obtained, be added to it, we shall have the heliocentric latitude required. The ecliptic heliocentric longitude, referred to the mean equinox of date, will be got by adding to λ the reduction to the ecliptic, from Table XLVI. As the value of the reduction, given in the body of the Table, is for the epoch 1850, we must apply to it the variation in 100 years multiplied by the fraction of a century elapsed since 1850. The heliocentric longitude referred to the true equinox of date will be found by adding the nutation of the equinoxes in longitude. The lunar nutation will be obtained by subtracting $18^{\prime \prime}$ from ΔK_{x} in Table XL.; the solar nutation is given in the last column of Table XLI.
x, y, and z may then be obtained by the formulæ

$$
\begin{aligned}
& x=r \cos l \cos \lambda^{\prime} \\
& y=r \cos l \sin \lambda^{\prime} \cos \varepsilon^{\prime}-r \sin l \sin \varepsilon^{\prime} \\
& z=r \cos l \sin \lambda^{\prime} \sin s^{\prime}+r \sin l \cos \varepsilon^{\prime}
\end{aligned}
$$

in which λ^{\prime} and l are the heliocentric longitude and latitude, and $\varepsilon^{\prime}=\varepsilon+\Delta \varepsilon$, the apparent obliquity of the ecliptic.

INTRODUCTION.

If the given year is not between the limits $\mathbf{1 7 5 0 - 1 9 4 9}$, we take from Tables VI. and XXXIX, the values of L, nm , the Arguments I.- XVI., $\log \sin i$ and $360^{\circ}-\delta$, for the corresponding year of the $19^{\text {th }}$ century, (remembering to add algebraically a unit to the year if the given date is before the Christian era.)

We add to these the quantitics obtained from Table XLIV., with the given century as the Argument. Moreover we add to $L, I, \log \sin i$ and $360^{\circ}-\delta$ respectively the quantities given in the adjacent columns, headed $t^{\prime}-50$, multiplied by this factor, (t^{\prime} denotiug the number of years of the given century,) noticing that in the case of $\log \sin i$, the quantities in the column headed $t^{\prime}-50$ are in units of the last decimal of this quantity. It will be observed that the argument 1500 occurs twice in Table XLIV.; the first line is to be employed for dates in old style, the second for dates in new style.

After this, we proceed precisely as before, except that Table VIII. not being available, we employ in its stead Table XLV., which we enter twice, first with the corresponding year of the $19^{\text {th }}$ century as the argument, and subtractiug from L the equation obtained; next with the given year, as the argument, or this augmented or diminished by the requisite number of multiples of the period, which will be found at the bottom of the Table; and adding to L the equation thus obtained.

In this case, we must necessarily deduce the heliocentric longitude and latitude of the planet, since the tables for finding K_{x}, K_{y}, \&c., are restricted to the years 1750 - 1919. The method of computing by rectangular courdinates is only to be preferred when we have the coördinates of the sun ready at hand.

In eomputing an ephemeris we shall avoid the horizontal interpolation in the tables to double entry, if, instead of computing the perturbations, for the Washington Mean Noon of some particular day, and for equal intervals thereafter, we compute the value of the perturbations, for the times, when Arg. I. is an exact multiple of 8 clays, and then the interpolation, with reference to Arg. I., can be performed on the sums. It will be found that the interval of 8 days is not too long for the secure interpolation of intermediate values. However, if en should be quite large, that is, if the given time is quite distant from 1850, the terms of the perturbations, which iavolve this factor, may be computed separately, for the times, for which, the ephemeris is wanted. In all eases, the interpolation of the sums of the perturbations, to the times of the ephemeris, will be easier, if these sums are first interpolated into the middle, that is, for every 4 days. In the computation of an isolated position even, this method of obtaining the perturbations, first for the times when Arg. I. is a multiple of 8 days, can be followed with advantage, at least as far as regards the tables to double entry.

The following examples will sufficiently illustrate the foregoing precepts:-

1. Required in ephemeris of the heliocentric position of Venus, for Washington Mean Noon, at intervals of 2 days, and covering the time of the Transit on Dec. $8^{\text {th }}, 1874$.

We will commence the calculation of the perturbations at $310^{2} .3195$ from the beginning of the year $=$ Nov. $6^{4} .3195$, when the value of Argument I is 160^{4}.

Preparation of the Arguments.

INTRODUCTION.

	X.	XI.	XII.	XII	XIV.	XV.	XVI.
Table VI., 1874,	42.20	17.72	53.0	27.03	30.6	6005.2	1.8
Table V., Incr. of $\mathbf{m}=1$,	33.26	147.64	19.6	3.11	0.7	310.0	310.0
Periods,	-60.00		-60.0				
Arguments for Date,	15.46	165.36	12.6	301.4	31.3	6315.2	311.8

Perturbations of the Longitude, in hundredths of a second.

Note.-The inequality from Table XII. is insensible at this epoch, as is also the corresponding one of Log. r in Table XXVIII

Perturbations of Log r, in units of the eighth decimal.

Arg. I.	160	168	176	184	192	200	208	216	224
Table XXVII	-133	-15	+104	+219	$+323$	$+411$	$+478$	$+522$	+538
Table XXIX	2146	1989	1850	1753	1716	1748	1841	1978	2136
Table XXX	292	309	320	324	321	311	295	274	248
Table XXXI	17	66	141	236	339	440	528	594	636
Table XXXII .	50	46	36	24	13	9	9	12	11
Table XXXIII	231	221	214	210	211	216	224	235	245
Table XXXIV	85	70	57	46	36	29	23	20	19
Table XXXV .	140	134	125	112	99	85	73	65	60
Table XXXVI	36	32	27	22	17	11	6	3	0
Sums	2864	2852	2874	2946	3075	3260	3477	3703	3893

Perturbations of the Latitude, in hundredths of a second.

INTRODUOTION.

Interpolating the perturbations of the longitude and $\log r$ to intervals of 4 days, we have,

Arg. I.	Pert. of the Long.	Diff.	Pert of $\log r$.	Diff.	Arg.	Pert. of the Long.	Diff.	Pert. of $\log r$.	Diff.
160	42.65		2864		192	41.13		3075	
161	42.47	- 18	2855		196	40.72	- 41	3162	+
168	42.31	16	2852	- 3	200	40.19	53	3260	
17:	42.18	13	2858	+6	201	39.54	65	3365	105
176	42.01	14	2874	16	208	38.75	79	3477	112
180	41.89	15	2903	29	212	37.80	95	3592	11
181	41.70	19	2946	43	216	36.72	108	3703	11
188	41.45		3003	57	2:0	$3 \overline{5} .50$	122	3804	10
19:	41.13	- 32	3075	+72	221	34.17	-133	3893	+

The Orbit Longitude and Log. r. Washington Mean Noon.

$\begin{aligned} & \text { Date. } \\ & 1>74 . \end{aligned}$	$\begin{array}{\|l} \text { Diay of } \\ \text { Year. } \end{array}$	Arg. 1.	$\begin{aligned} & \text { Mean Longitude } \\ & \text { from Tables } \\ & \text { V1.-V11I. } \end{aligned}$	Equa. of the Centre from Table X.	Pert. of the long.	Orbit Long.	Log. Elliptie r from Table xxvi.	Pert. of Log. r.	Log. r.
Dec. 3	337^{4}	186.6505	$68 \quad 3 \quad 8.37$	${ }^{\prime} 45.10$	41.54	$68^{\circ} \quad 9 \quad 35^{\prime \prime} .11$	9.8578827	298	9.857912
	339	188.6505	$71 \quad 15 \quad 23.98$	75.00	41.40	712310.38	9.8577382	301	9.857768
7	341	190.6505	742739.59	832.38	41.24	743653.21	9.8575986	305	9.857629
9	313	192.6505	773955.21	$10 \quad 7.11$	41.07	775043.39	9.8574644	309	9.857495
11	345	194.6505	805210.82	1148.87	40.87	81440.56	9.8573358	313	9.857367
13	317	196.6505	$84 \quad 426.44$	1337.36	40.64	841844.44	9.8572135	318	9.857215

Inequalities of $\boldsymbol{K}_{\mathrm{x}}, \boldsymbol{K}_{\boldsymbol{y}}, \& c$.

Day of Year.	ΔK_{x}.			ΔK_{y}.			$\Delta I_{\text {z }}$.			$\Delta \log k_{y}$.		
	$\begin{aligned} & \text { Table } \\ & \text { NL. } \end{aligned}$	$\begin{aligned} & \text { Table } \\ & \text { XII. } \end{aligned}$	Sum.	$\begin{aligned} & \text { Table } \\ & \text { XL } \end{aligned}$	$\begin{aligned} & \text { Table } \\ & \text { XLI. } \end{aligned}$	Sum.	$\begin{aligned} & \text { Table } \\ & \text { XL. } \end{aligned}$	Table XLI.	Sum.	$\begin{aligned} & \text { Table } \\ & \text { XL. } \end{aligned}$	$\begin{aligned} & \text { Table } \\ & \text { XLI. } \end{aligned}$	Sum.
$310{ }^{\text {a }}$	10.68	0.78	11.46	11.23	${ }^{\prime \prime} .83$	12.06	12.81	${ }_{0}^{\prime \prime} 21$	13.05	5	19	24
$3: 0$	10.82	0.85	11.67	11.37	0.90	12.27	12.96	0.19	13.15	5	21	26
330	10.96	1.07	12.03	11.52	1.11	12.63	13.11	0.28	13.39	5	23	28
340	11.11	1.39	12.50	11.66	1.42	13.08	13.26	0.49	13.75	4	25	29
350	11.25	1.80	13.05	11.81	1.83	13.64	13.40	0.80	14.20	4	27	31
360	11.40	2.26	13.66	11.95	2.30	14.25	13.55	1.19	14.74	4	28	32
370	11.51	2.68	14.2:	12.10	2.72	14.82	13.70	1.57	15.27	3	28	31

Day of Year	$\Delta \log k_{z}$.			K_{x}.	$K_{\text {y }}$.	$K_{\text {g }}$.	$\log k_{x}$.	Log k_{y}.	$\log k_{z}$.
	$\begin{gathered} \text { Table } \\ \text { XL. } \end{gathered}$	$\begin{aligned} & \text { Table } \\ & \text { XlI. } \end{aligned}$	Sum.						
$3110^{\text {a }}$	828	46	874		127 ²'.22	$352^{\circ} 44{ }^{\prime} 25.01$	9.9992854	9.9598380	
320	829	34	863	24.11	- 22.43	352 25.11	2.9392854	9.9598380 82	$\begin{aligned} & 9.135 \\ & 424 \end{aligned}$
330	830	23	853	24.47	22.79	25.35	4	84	414
310	831	14	845	24.94	23.24	25.71	4	85	406
350	833	7	840	25.49	23.80	26.16	4	87	401
360	831	3	837	26.10	24.41	26.70	4	88	398
370	835	2	837	26.66	24.98	27.23	4	87	398

INTRODUCTION.

Computation of the Rectangular Coördinates.

Date, 1874.	$\lambda+K_{x}$.	$\lambda+K_{y}$.	$\lambda+K_{2}$.	$\log k_{x} \sin \left(\lambda+K_{x}\right)$.	$\log k_{y} \sin \left(\lambda+K_{y}\right)$.	$\log k_{z} \sin \left(\lambda+K_{2}\right)$.
Dec. 3	158 ¢ 7 ¢ 59.90	$69^{\circ} 3666^{\prime \prime} 58.20$	$60^{60} 544^{\prime \prime} \quad 0.70$	9.5703515	9.9317544	9.5593398
5	1612135.27	725033.57	$\begin{array}{llll}64 & 7 & 36.05\end{array}$	9.5039252	9.9400684	9.5720679
7	$16435 \quad 18.20$	$\begin{array}{llll}76 & 4 & 16.50\end{array}$	672118.96	9.4237611	9.9468769	9.5830998
9	$\begin{array}{llll}167 & 49 & 8.49\end{array}$	$\begin{array}{llll}79 & 18 & 6.79\end{array}$	$\begin{array}{llll}70 & 35 & 9.22\end{array}$	9.3235684	9.9522237	9.5925170
11	$\begin{array}{llll}171 & 3 & 5.76\end{array}$	$\begin{array}{llll}82 & 32 & 4.07\end{array}$	$\begin{array}{llll}73 & 49 & 6.48\end{array}$	9.1911412	9.9561415	9.6003850
13	$\begin{array}{llll}174 & 17 & 9.75\end{array}$	$\begin{array}{llll}85 & 46 & 8.06\end{array}$	$\begin{array}{llll}77 & 3 & 10.45\end{array}$	8.9973798	9.9586533	9.6067565
Date, 1874.	$\log x$.	$\log y$.	$\log z$.	x.	y.	z
Dec. 3	9.4282640	9.7896669	9.4172523	$+0.2680798$	+0.6161223	$+0.2613680$
5	9.3616935	9.7978367	9.4298362	0.2299818	0.6278223	0.2690520
7	9.2813902	9.8045060	9.4407289	0.1911570	0.6375379	0.2758855
9	9.1810637	9.8097190	9.4500123	0.1517273	0.6452366	0.2818463
11	9.0485083	9.8135086	9.4577521	0.1118171	0.6508915	0.2869142
13	8.8546251	9.8158986	9.4640018	+0.0715525	+0.6544833	+0.2910729

TABLE XLII.

2. Required the heliocentric longitude and latitude and the logarithm of the radius vector of Venus for 1769 , June $3^{\mathrm{d}} 10^{\mathrm{h}} 10^{\mathrm{m}}$ Paris mean time.

This is equivalent to June $3^{\mathrm{d}} 4^{\mathrm{h}} 52^{\mathrm{m}} 26^{\mathrm{s}} .98$ Washington mean time $=154^{\mathrm{d}} .20309$ from the beginning of the year.

Preparation of the Arguments.

INTRODUCTION.

Mean Longitude.

Table VIII., $1769,\left(-0^{\prime \prime} .015 \times 0.4\right)=\frac{-0.006}{252 \quad 041.40}$
Mean Longitude,

Longitude.

Mean Longitude				${ }_{0}{ }^{\prime} 411.40$
Equation of the Centre			1	2539.70
Table XI., $-10.363 \times(-131)$				± 13.57
Table XII., $+1.66 \times(-1.31)^{2}$				+ 0.03
Table XIII.,				4.66
Table XIV.,				0.32
Table XV.,				1.12
Table XVI.,				4.45
Table XVII.,				16.68
Table XVIII,				2.05
Table XIX.,				1.21
Table XX.,				2.93
Arg. I.,	72	80		
Table XXI.,	82	80		
Table XXII.,	145	150		
Table XXIII.,	10	8		
Table XXIV.,	310	308		
Table XXV.,	15	17		
Sums	562	563		
Interpolated,				5.63
Grbit Longitude,			253	2713.75
Red. to Ecliptic, Table XLVI.,				+7.26
Lunar Nutation, Table XL.,				+17.29
Solar Nutation, Table XLI.,				-0.68
Heliocentric Longitude,			253	2737.62

Mean Longitude				${ }_{0}{ }^{\prime} 41{ }^{\prime \prime} .40$
Equation of the Centre			1	2539.70
Table XI., $-10.363 \times(-131)$				± 13.57
Table XII., $+1.66 \times(-1.31)^{2}$				+ 0.03
Table XIII.,				4.66
Table XIV.,				0.32
Table XV.,				1.12
Table XVI.,				4.45
Table XVII.,				16.68
Table XVIII,				2.05
Table XIX.,				1.21
Table XX.,				2.93
Arg. I.,	72	80		
Table XXI.,	82	80		
Table XXII.,	145	150		
Table XXIII.,	10	8		
Table XXIV.,	310	308		
Table XXV.,	15	17		
Sums	562	563		
Interpolated,				5.63
Crbit Longitude,			253	2713.75
Red. to Ecliptic, Table XLVI.,				+7.26
Lunar Nutation, Table XL.,				+17.29
Solar Nutation, Table XLI.,				-0.68
Heliocentric Longitude,			253	2737.62

INTRODUCTION.

Encke's reduction of the observations of the Transit of Venus in 1769 gives $253^{\circ} 27^{\prime} 13^{\prime \prime} .17$ and $+0^{\circ} 4^{\prime} 4^{\prime \prime} .56$ as the orbit longitude and latitude.* But according to the Tables du Soleil of Hansen and Olufsen, the longitude and latitude of the Sun, adopted by Encke, must be corrected, respectively, by $+0^{\prime \prime} .64$ and $+0^{\prime \prime} .04$. Thus we may adopt $253^{\circ} 27^{\prime} 13^{\prime \prime} .81$ and $+0^{\circ} 4^{\prime} 4^{\prime \prime} .52$ as the values given by observation, and the residuals, Obs. - Cal., are respectively $+0^{\prime \prime} .06$ and $-0^{\prime \prime} .38$.

If Encke's reduction of the Transit of 1761 is compared with the Tables, in the same way, the residuals will De found to be $-0^{\prime \prime} .33$ and $+0^{\prime \prime} .40$.
3. Required the heliocentric position of Venus for 1639 , Dec. $4^{\mathrm{d}} 3^{\mathrm{h}} 44^{\mathrm{m}} 55^{\mathrm{s}}$ Paris mean time.

This time is equivalent to Dec. $3^{\mathrm{d}} 22^{\mathrm{h}} 27^{\mathrm{m}} 21^{\mathrm{s}} .98$ Washington mean time $=337^{\mathrm{d}} .93567$ from the beginning of the year.

Preparation of the Arguments.

	m	1.	11.	III.	IV.	V.	VI.	VII.	VIII.	IX.
Table VI., 1839	-18	98.2956	156.9	7786	2358	1108.9	303.49	196.3	138.7	${ }^{\text {d }}$
Table XLIV, 1600.	-326	204.4585	38.9	10863	932	1153.7	526.09	144.6	180.0	182.50
Ferms $\times\left(t^{\prime}-50\right)$,		+0.0005 337.9357	0.9	338	338	337.9	337.94	337.9		
Periods, .	$+2$	-449.4016	0.9	-11987	-2959	-1454.9	-583.92	-486.3	-440.1	337.94 -473.98
Arguments for date,	-342	191.2887	196.7	7000	669	1145.6	583.60	192.5	216.5	112.85

	X .	X1.	XII.	XIII.	XIV.	$\log \sin i$.	$360^{\circ}-8$.	XV.	XVI.
$\begin{aligned} & \text { Tables VI., XXXIX, } \\ & 1839 \end{aligned}$	6.46	1.97	14.4	29.66	23.7	8.7721999	$28446{ }^{\prime \prime} \quad 4.6$	19.4	${ }_{1.3}^{\text {d }}$
Table XLIV., 1600	17.69	107.80	22.2	5.56	6.9	-0.0002732	+14817.0	1732.9	+0.4
Terms $\times\left(t^{\prime}-50\right)$,						-24	- 0.6		
Day of Year, or Periods Periods	6.52	55.29	$\begin{array}{r} 39.3 \\ -60.0 \end{array}$	6.22	1.5	+12	30.1	337.9	337.9
Arguments for date,	30.67	165.06	15.9	41.44	32.1	8.7719255	2863350.9	2090.2	339.6

Mean Longitude.

Table VI., 1839
Table XLIV., 1600 ,
Term $\times\left(t^{\prime}-50\right)$,
Table VII., Dec. 3,
Table IX., $22^{\text {h }}$,
" " 27^{m},
" " $21^{\mathrm{s} .98}$,
Table XLV., 1839.9 with opp. sign,
" \quad " $1942.3=1639.9+302.4$,
Mean Longitude,
L.

- , "
$285 \quad 5948.72$
3244655.79
$+0.458$
1795551.07
$128 \quad 7.157$
148.146
1.466
-0.176
-0.279
721232.35

[^3]
INTRODUCTION.

Longitude.

If Encke's reduction of Horrox's observations of the Transit at this time be corrected to conform with the position of the Sun as derived from Hansen and Olufsen's Tables, the residuals of the orbit longitude and heliocentric latitude are found to be respectively $+11^{\prime \prime} .4$ and $-18^{\prime \prime} .9$.

INTRODUCTION.

CORRECTION OF THE ELEMENTS OF THE ORBIT OF VENUS.

The Elements, adopted for comparison with observation, are, in the main, those on which Leverrier has based his Tables.

They are-

$$
\begin{aligned}
& \text { Epoch, 1850, Jan. 1.0, Paris Mean Time. } \\
& \qquad \begin{array}{c}
\circ \\
L^{\prime}=25
\end{array} 3^{\prime} \quad 14.70 \\
& \pi^{\prime}=1292714.5 \\
& 8^{\prime}=751952.3 \\
& i^{\prime}=32334.83 \\
& e^{\prime}=0.00684331 \\
& n^{\prime}= \\
& \hline 106641^{\prime \prime} .3831
\end{aligned}
$$

The value of n^{\prime} has been changed in order to make the adopted tropical motion coincide with Leverrier's value. The values of the disturbing masses, and, in fact, of all the constants needed in the theory, are, with two exceptions, those given in the Introduction. But the annual tropical motion of the node at the epoch 1850 employed is $32^{\prime \prime} .2931$ as it results from the adopted values of the planetry masses : and the true longitude of the Sun is derived from the apparent longitude of Hansen's and Olufsen's Tables du Soleil by subtracting the effect of aberration corresponding to the constant $20^{\prime \prime} .255$.

All the elements, except the mean motion, are determined, with nearly all the precision possible by the modern observations; that is to say, those comprehended in the interval from 1836 up to the present time. The addition of the observations made previously to 1836 to the discussion, would scarcely increase this precision. For the mean motion we must employ ancient observations; and for this purpose it seems better to depend on the data furnished by the Transits of 1761 and 1769 , than on the somewhat uncertain observations of Bradley.

Encke's reduction of these Transits, corrected to conform with the positions of the Sun derived from the Tables du Soleil, will be adopted. All the longitudes mentioned here are referred to the mean equinox of date.

For the Transit of 1761 Encke gives

But the Tables du Soleil give $75^{\circ} 35^{\prime} 52^{\prime \prime} .05$ and $+0^{\prime \prime} .53$ as the longitude and latitude of the Sun. Consequently the adopted position of Venus is

	$\quad \circ$	\prime	$\prime \prime$
Orbit Longitude	$=$	$5^{\prime} 35$	36.90
Heliocentric Latitude	$=$	-345.84.	

For the Transit of 1769, Encke gives

$$
\begin{aligned}
& \text { Paris Mean Time }=1769 \text {, June } 3^{\mathrm{d}} 10^{\mathrm{h}} 10^{\mathrm{m}} \text {. } \\
& \text { True Longitude of the Sun }=7327^{\prime} 13.8 \text {, } \\
& \text { Latitude of the Sun } \quad=\quad 0.0 \text {, } \\
& \text { Orbit Longitude of Venus }=25327 \text { 13.17, } \\
& \text { Heliocentric Latitude of Venus }=\quad+44.56 .
\end{aligned}
$$

The Tables $d u$ Soleil give $73^{\circ} 27^{\prime} 14^{\prime \prime} .25$ and $+0^{\prime \prime} .04$ as the longitude and latitude of the Sun. Consequently the adopted position of Venus is

Orbit Longitude of Venus	$=$	253	\circ
27^{\prime}	13.62,		
Heliocentric Latitude of Venus $=$	+4	4.52.	

INTRODUCTION.

The meridian observations have been corrected to conform with the constant $8^{\prime \prime} .818$ of solar parallax, and to the following expression for the semi-diameter:

$$
\frac{8^{\prime \prime} .516}{\Delta}+0^{\prime \prime} .57
$$

In other respeets Leverrier's reduction has been adopted. With regard to the Greenwich and Paris observations which have accumulated since Leverrier made his investigation, that is, from 1858 forward, as, on comparing the places, given in the several annual volumes, for the fundamental time-stars, with Dr. Gould's Standard Places, $\mathcal{S} \cdot$., no sensible average diflerence in the right ascensions could be discovered, no correction for difference of equinoxes has been applied to them. To the Washington observations in deelination in the years 1866,1867 , has been applied the correction $+0^{\prime \prime} .75$. (See W'ashington Observations for 1867 , Appendix III., pp. 20, 21.)

In forming the following normals, Paris observations have been combined with Greenwich; but Washington ubscrvations have been kept separate. The normals, formed from them, are those given for Washugton Mean Noon. The Paris Observations used are not in great number, and belong to the years 1838 and 1856-1866. The comparisons are Obs. - Cal.

Normals in the inferior part of the Orbit.

INTRODUCTION.

No.	Greenwich M. 'T\%			App. J. A.	App. Dec.	No. Obs.	$\triangle n$	$\triangle \delta$
17	185\%,	June	26.0	$3^{11} \because 0^{112}+19.536$	+ $11^{\circ} 16^{\prime} \cdot 16^{\prime \prime} 18$	12	+0.081	+ ${ }^{\prime \prime} .07$
48	1858,	Aug.	17.0	$12: 2181.3: 1$	- 21032.51	9	-0.139	+1.03
49		Sejpr.	18.0	113157.511	- 172117.16	4	-0.0.58	-1.56
50		Oct.	10.0	16 ご 1.666	- 214217.26	10	- 0.086	- 0.62
5		Nov.	7.0	173719.017	-28 151.96	11	+0.0.0	-3.24
52		Nov.	29.0	$175.5 \quad 9.651$	-25 3131.11	3	+0.311	-4.70
53		Dec.	21.0	$\begin{array}{llll}17 & 752.455\end{array}$	- 20 1 43.16	4	+0.203	-2.23
5	1859,	Jith.	10.0	165827.618	- 1721 2 38.11	7	+0.051	+3.60
55		Jan.	29.0	174025.353	- 18208201	8	+0.138	+0.17
5)	1860,	May	3.0	5) 5318.56 .1	+2636 37.27	4	+0.031	+1.43
57		May	$2: 3.0$	$716 \quad 2.843$	+25 2336.95	5	+0.012	+1.53
58		June	19.0	82355.823	+195830.41	5	+0.103	+2.43
59		July	10.0	81115.899	+16 82 2.57	6	+0.103	+2.50
60		Aug.	31.0	74810.699	+ 162114.53	7	+0.203	+0.18
61		Sept.	≥ 2.0	$\begin{array}{llllll}9 & 1 & 57.720\end{array}$	+144121.01	11	+0.171	-0.67
62	1861,	Dee.	10.0	20.3139 .810	-21 9 42.34	4	-0.020	-1.41
63		Dec.	260	213751.853	- 152911.52	7	$+0.036$	- 1.41
61	186:	Jan.	16.0	2 2 38 24.381	- 6592.66	9	+0.063	-0.43
65		Feb.	12.0	225059.987	+ 01757.58	2	+0.201	-2.41
66		March	11.0	215859.897	- 35931.67	5	$+0.211$	+3.72
67		April	23,0	231466.685	- 42027.06	9	+0.061	+0.09
68		May	13.0	0263.479	+ 11959.00	4	-0.069	+2.83
69	1863,	July	11.0	102137.937	+ 105331.89	7	-0.014	+0.74
70		Aug.	1.0	$1135 \quad 5.496$	+ 1221.05	6	-0.004	-2.34
71		Aug.	12.0	$12425.88:$	- 32649.57	7	$+0.106$	-4.25
72		Sept.	1.0	123555.78 .5	- 102346.78	6	-0.108	+0.38
73		Scpt.	19.0	122454.206	- 114946.67	6	+0.117	+1.85
3		Oct.	28.0	115036.106	- 14320.76	2	+0.117	-3.63
75		Nov.	20.0	1247 333:271	- 35337.08	5	+ 0.202	- 2.15
76	1865,	Fob.	13.0	03811.720	+ 584.61	4	-0.01:	-1.17
77		March	25.0	2519.300	+214433.17	7	-0.008	+0.69
78		April	9.0	3231.559	+24 4629.99	10	+0.057	+0.96
79		April	25.0	32045.253	+213133.59	11	+0.102	- 0.08
80		Miny	7.0	25028.201	+2183.49	7	+0.201	+1.48
81		May	$\stackrel{21.0}{ }$	22859.092	+145817.96	9	+ 0.2333	+1.59
8:		Junc	11.0	2 42 18.347	+13 419.61	8	+0.208	+0.26
83		June	22.0	37828.235	+14 5 20.47	7	+0.139	-0.07
81		July	11.0	$4 \quad 916.618$	+1722 1.01	9	+0106	+0.31
85	1866,	Scpt.	25.0	$\begin{array}{lll}15 & 1 & 14.407\end{array}$	-2015 30.52	3	$+0.066$	+0.55
86		Oct.	16.0	162417.041	-26 5 30.30	7	+ 0.017	-1.53
87		Oct.	27.0	17 2 22.875	-273658.50	3	-0.002	+0.46
88		Nov.	15.0	174428.584	- 274220.26	9	+0.208	-0.31
89		Nov.	30.0	$17 \quad 392.404$	-25 2542.81	4	+0.417	+0.05
90		Dec.	28.0	164436.668	-18 5 53.53	2	+0.359	+0.19
91	1867,		7.0	$\begin{array}{lllll}18 & 9 & 47.5837\end{array}$	-19 $\quad 58.09$	6	+0.174	+1.01
92		March	30.0	215248.772	-125121.47	2	$+0.015$	-0.29
93	1868,		6.0	$\begin{array}{llll}6 & 7 & 11.831\end{array}$	+264251.56	6	-0.111	+0.76
94		May	19.0	$7 \quad 021.501$	+25 576.61	3	$+0.0 .1$	+0.95
95		May	29.0	73452.419	+242940.91	4	+0.103	+0.74
96		June	12.0	$8850.82:$	+214150.55	9	+0.059	+0.79
97		Junc	29.0	81630.999	+181310.72	7	+0.203	-0.09
98		July	14.0	7479.381	+16 9 52.23	6	$\underline{+0.177}$	+1.23
99		July	28.0	71421.065	+153415.57	4	+0.173	-1.35
100		Aug.	15.0	71141.426	+161352.99	1	+0.050	-0.96
101		Aug.	26.0	73223.633	+163818.77	4	+0.10.1	+0.03
10:		Sept.	4.0	75743.509	+1635 5.21	4	-0.069	-0.37
103		Sept.	18.0	84643.419	+1525 27.66	6	$+0.001$	-0.63
104	1869,	Dec.	1.0	$\begin{array}{lll}19 & 55 & 0.743\end{array}$	-233319.35	2	+0.033	$+0.09$
105		Dec.	23.0	212628.614	-1637 52. 39	1	+0.038	+0.94
106	1870,	Jan.	3.0	$22 \quad 246.594$	-12180.76	1	+ 0.092	+1.72
107		Jan.	27.0	224813.855	- 32426.46	4	+0.339	+2.61
108		Feb.	21.0	221912.992	- 11410.51	3	+0.257	+2.49
109		March	19.0	21496.160	- 64237.21	2	+0.195	$+1.21$
110		April	5.0	221834.856	- 71836.33	2	+0.087	$+2.55$
111		April	12.0	223759.07 2	- 6362.61	3	+0.266	+2.67
112		April	22.0	$2310 \quad 0.139$	- 49621.21	3	+0.060	+:31
	4 V				25			

INTRODUCTION.

Normals in the superior part of the Orbit.

No.	Greenwich M. 'T.		App. R. A.	App. Dec.	No. Obs.	$\triangle a$	$\Delta \delta$
146	1858,	Jan. 23.0		--215 53́ 48.46	3	+0.022	-2.26
117		April 23.0	25659.252	$+163527.79$	5	-0.005	-0.10
118		Junc 14.0	72755.977	+233318.26	13.	+0.078	-0.13
149		July 19.0	101752.788	+121047.22	5	-0.035	+0.11
150	1859,	Feb. 23.0	191456.589	-191537.66	7	+0.022	-0.82
151		Mareh 18.0	20574.220	-161130.29	6	+0.188	+2.39
150		Junc 17.0	34635.988	+ 18291.65	4	+0.033	-0.10
153		July 19.0	63141.515	+23657.50	11	-0.021	- 0.31
154		Aug. 23.0	93320.65%	+ 154911.42	8	-0.016	-0.44
155		Nov. 13.0	161334.918	-20 4538.42	5	+0.014	-1.75
156		Dec. 17.0	$\begin{array}{llll}19 & 5 & 56.987\end{array}$	- 235527.75	4	+0.043	-3.39
157	1860,	Jan. 17.0	214614.280	-1510 47.89	5	+0.016	-2.66
158		Feb. 29.0	$1 \begin{array}{lll}1 & 0 & 24.170\end{array}$	+ 61555.78	3	-0062	-0.77
159		April 19.0	44831.013	+25 1019.92	4	-0.014	-0.01
160		Oct. 21.0	$111: 317.826$	+ 55146.41	5	$+0.086$	-0.8:
161		Dec. 10.0	144235.914	-134052.46	5	-0.060	-0.81
162	1867,	May 14.0	11119.973	+ 53441.60	6	+0.113	+0.44
163		Junc 17.0	3498.762	+ 183858.87	5	+0.050	+1.11
164		Aug. 18.0	$9 \quad 10 \quad 1.066$	+ 172341.04	6	-0.059	+ 0.60
165		Oct. 15.0	$1341 \quad 6.075$	- 92837.18	1	+0.009	-1.01

INTRODUCTION.

Normats in the superior part of the Orlit.

No.	Greenwich M. 't'.			App. IR. A	App. Dee.	Nu.Obs.	$\triangle a$	Δs
166	1867,	Nor.	19.0			5	-0.007	-0.51
16%	1868,	Oct.	16.0	$1040 \quad 43.171$	+ 8: 1839.88	9	+0.100	+0.01
168		1)ee.	17.0	15 18 16.956	- 1603836.95	6	+0.083	$+0.83$
169	1869,	Ian.	12.0	$17 \quad 3257.506$	-2202025.57	5	$+0.050$	-1.48
170		April		1367.195	+ 84359.95	6	-0.070	+0.55
171		June	17.0	64955.781	+ 24755.16	5	-0.020	+ 0.35
172		July	16.0	9616.090	+1833 2.87	4	-0.208	+0.78
173		Aug.	26.0	${ }^{1} 1210 \quad 0.081$	- 07381.79	5	-0.010	+ 0.29
171		Sopt.	21.0	$14 \quad 526.8333$	- 13817.72	4	-0.18:3	$+1.02$
17.5		Oct.	13.0	15. 49 4(6.368	-21 1241.87	5	-0.020	+1.43

In order to have as feew unkown quantities, in the equations of condition, as possible, the differenees f a and So have been changed into ens γ. $J 0$ and $J_{\gamma} ; 0$ denoting the geocentric longitude of Venus referred to a plane drawn throngh the eentre of the Earth parallel to the plane of the orbit of Venus, and η denoting the corresponding latude. The formula used are given in Watsos's Theoretical Astronomy, pp. 153-159.

In the following equations, we have put

$$
\left.\left.\left.x=\lrcorner L_{0}^{\prime}-2 \sin ^{2} \frac{i^{\prime}}{2} \Delta \Omega^{\prime}, \quad y=100\right\lrcorner u^{\prime}, \quad z=\Delta e^{\prime}, \quad u=e^{\prime}(\lrcorner \pi^{\prime}-2 \sin ^{2} \frac{i^{\prime}}{2}\right\lrcorner \Omega^{\prime}\right)
$$

all expressed in seconds of are; and $x^{\prime}, y^{\prime}, z^{\prime}$ and u^{\prime} denote the similar quamtities in reference to the solar elements. In the computation of the cocflicients of the last, roughly approximate formule have been used.

A mean of the Transits of 1761 and 1769 gives

$$
+0.992 x-0.839 y+1.61 z+1.17 u+1.00 x^{\prime}-0.84 y^{\prime}+0.83 z^{\prime}-1.8 u^{\prime}=+1^{\prime \prime} .745
$$

The indeterminate correction of the Sun's semi-diameter nearly disappears from this mean.
The following equations of condition are numbered with the same number es the normals, from which they arr lerived. The last column eontains the residuals-which remain after the elements have been corrected as shown in the sequel.

Equations of condition.

No.

INTRODUCTION.

Equations of condition.

No	(${ }^{\text {c }}$						Residuals.
						"	
	$-0.47 x+0.02 y-0.47 z+1.64 u+1.47 x^{\prime}-0.06 y^{\prime}+2.19 z^{\prime}+2.48 u^{\prime}=-0.98$. 79
22	- 1.51	$+0.06-1.31+3.16+2.54$	-0.10	+ 4.37	+3.00	$=-1.19$	-2.93
23	-1.95	$+0.07-2.61+3.15+2.95$	-0.11	+5.79	+2.51	$=+1.81$	0.20
21	-0.40	$+0.01+1.03-1.15+1.40$	-0.03	-2.79	-1.18	$=+0.42$	$+0.24$
25	-2.29	$+0.05+3.87-2.60+3.28$	-0.07	-6.58	-0.29	$=-2.95$	3.92
26	-0.55	$+0.01+1.78-0.38+1.55$	-0.03	-3.33	$+1.04$	$=+3.15$	+2.75
27	-2.22	$+0.02-4.51-0.53+3.22$	-0.02	+4.94	-4.09	$=+2.47$	$+0.72$
28	- 1.22	$+0.01-2.59-1.14+2.22$	-0.01	+3.02	-3.46	$=+0.04$	-0.85
29	-1.55	$-0.01+2.84+1.97+2.55$	$+0.02$	-2.07	+ 4.94	$=-2.24$	-3.81
30	-2.73	$-0.03+3.75+3.93+3.72$	+0.04	-2.06	$+7.28$	$=-0.41$	- 3.18
31	- 0.88	$-0.01+1.17+2.02+1.88$	+ 0.02	-1.96	$+4.10$	$=+4.28$	$+3.11$
32	- 2.18	$-0.05-1.24-4.31+3.18$	+ 0.08	- 1.77	-6.06	$=-0.38$	- 1.64
33	-1.26	$-0.03+0.04-2.92+2.26$	$+0.06$	-2.00	-4.22	$=+2.07$	+1.48
31	- 0.44	$-0.01+0.19-1.60+1.44$	+ 0.04	-1.92	-2.50	$=+1.59$	+1.39
35	-0.68	$-0.03-0.51+1.96+1.68$	+0.07	+2.58	+2.70	$=+0.46$	-0.68
36	-1.37	$-0.06-1.02+2.96+2.37$	$+0.10$	$+3.95$	$+3.09$	+ 0.71	-1.20
37	-2.43	$-0.10-2.15+4.44+3.42$	+0.14	+5.83	+3.70	$=+2.52$	-0.59
38	-0.54	$-0.03+1.14-1.33+1.54$	+0.09	-3.10	-1.20	$=-0.19$	-0.52
39	-2.27	$-0.13+3.71-2.77+3.27$	+0.19	-6.49	-0.59	$=+0.25$	- 1.20
40	-2.32	$-0.13+4.26-2.04+3.27$	+ 0.19	-6.59	-0.07	$=+1.34$	-0.27
41	-0.46	$-0.03+1.64-0.39+1.46$	+0.09	-3.12	+0.99	$=+2.17$	+1.73
42	+0.13	$+0.01-0.89+0.28+0.87$	+0.06	+1.91	+0.52	$=+1.01$	+ 0.85
43	-0.25	$-0.02-1.34+0.16+1.24$	+0.09	$+2.71$	-0.68	$=-0.68$	- 1.18
44	- 1.37	$-0.10-3.10+0.07+2.37$	+ 0.17	+4.12	-2.66	$=+0.01$	-1.5%
45	-2.17	$-0.16-4.30-1.15+3.17$	+0.23	+4.76	-4.18	$=+1.79$	-0.31
46	-0.86	$-0.06-2.06-0.91+1.86$	+ 0.14	$+2.50$	-3.03	$=+0.55$	-0.31
47	-0.41	$-0.03-1.38-0.72+1.41$	+0.11	+ 1.57	-2.63	$=+1.49$	+ 1.01
48	+0.28	$+0.02+0.81-0.23+0.72$	$+0.06$	- 1.45	-0.59	$=-2.32$	-2,18
49	+0.13	$+0.01+0.92+0.17+0.87$	$+0.08$	- 1.91	$+0.43$	-0.21	-0.26
50	-0.05	$0.00+1.06+0.48+1.04$	$+0.09$	- 1.96	+ 1.41	$=-0.98$	- 1.26
51	-0.80	$-0.07+1.95+1.04+1.79$	$+0.16$	-2.15	$+3.30$	$=+0.98$	- 0.08
52	-2.13	$-0.19+3.57+2.60+3.10$	+0.28	-2.37	+5.96	$=+4.52$	+1.97
53	-2.58	$-0.23+3.49+3.83+3.54$	+0.32	-2.09	$+6.93$	$=+3.16$	-0.06
54	-1.28	$-0.12+1.70+2.46+2.26$	+0.20	-0.80	+4.79	$=+0.13$	- 1.67
55	-0.48	$-0.04+0.81+1.49+1.47$	+0.13	$+0.19$	+3.29	$=+1.9 \pm$	+1.03
56	+ 0.09	$+0.01-0.55-0.78+0.92$	+0.09	+1.02	- 1.78	$=+0.55$	+ 0.58
57	-0.17	$-0.02-0.62-1.07+1.18$	+0.12	+ 0.55	-2.81	$=+0.44$	+0.27
58	- 1.03	$-0.11-1.08-2.31+2.05$	+0.21	-0.57	-4.25	$=+0.95$	+0.14
59	-2.27	$-0.24-1.37-4.41+3.29$	+0.35	-1.62	-6.32	$=+1.02$	-0.62
60	-0.52	$-0.05+0.10-1.72+1.52$	+0.16	-1.83	-2.76	$=+2.87$	+2.42
61	-0.06	$-0.01+0.16-1.09+1.07$	+0.11	-1.89	-1.47	$=+2.61$	$+2.58$
62	+ 0.07	$+0.01-0.02+1.02+0.92$	+0.11	$+0.26$	+2.12	$=-0.58$	-0,88
63	-0.12	$-0.01-0.16+1.21+1.11$	+0.13	+1.00	+2.37	$=+0.07$	-0.48
64	-0.62	$-0.07-0.36+1.89+1.61$	+0.19	+2.35	+2.74	$=+0.72$	-0.48
65	-2.12	$-0.26-1.60+4.07+3.07$	+ 0.37	$+5.13$	+3.73	$=+1.87$	- 1.35
			28				

INTRODUCTION.

Liquations of contition.

No.

INTRODUCTION.

Equalions of condition.
No

INTRODUCTION.

Equations of condition.

The equations derived from the latitudes η contain two more unknown quantities,

$$
v=\Delta i^{\prime} \quad, \quad w=\sin i^{\prime} \cdot \Delta \Omega^{\prime},
$$

but in them the variation of the solar elements will be neglected.
The mean of the Transits of 1761 and 1769 gives

$$
-0.059 x+0.050 y-0.095 z-0.069 u+0.00 v+1.000 w=-1^{\prime \prime} .165
$$

From this mean the indeterminate correction of the Sun's semi-diameter is nearly eliminated.
Equations of condition.

1	$-0.01 x$	$+0.00 y$	$-0.01 z$	$+0.00 u$	$+0.61 v$	$+1.24 w$	$=+0.82$
2	-0.10	$+0.01$	-0.21	-0.08	-0.36	$+1.95$	$=+0.41$
3	-0.12	+ 0.02	-0.31	-0.11	-1.09	+2.04	-0.49
4	$+0.17$	-0.02	-0.41	+0.25	-2.13	+ 0.88	-0.14
5	$+0.20$	-0.03	-0.37	$+0.17$	-. 1.60	-0.4	1.51
6	$+0.09$	-0.01	-0.	-0.	+ 0.12	- 1.3	$=+0.0$
7	$+0.20$	-0.02	-0.23	-0.35	$+1.17$	1.42	$=+5.6$
8	+ 0.19	-0.02	-0.30	-0.49	$+2.32$	- 0.77	$=+1$.
9	-0.14	+ 0.02	-0.54	-0.16	+2.42	$+0.46$	$=+0.6$
10	-0.23	$+0.03$	-0.54	-0.07	$+1.88$	$+1.10$	$=-1.7$
11	-0.18	$+0.02$	-0.36	-0.10	+ 1.05	$+1.38$	$=-1.48$
12	-0.22	$+0.02$	-0.01	-0.58	-2.34	-0.09	$=-1.49$
13	+ 0.11	- 0.01	-0.33	-0.36	-2.06	-1.55	$=+1.0$
14	+ 0.12	-0.01	+ 0.21	-0.24	$+1.57$	+1.68	$=+0.34$
15	$\bigcirc 0.03$	0.00	-0.02	-0.09	$+0.06$	+2.34	$=+0.63$

INTRODUCTION.

Equations of condition.

16	$+0.02 x$	$0.00 y$	$+0.01 z$	+0.05 ¢	$-0.75 v$	+ $1.69 w$	
17	$+0.01$	0.00	-0.07	+0.04	$+0.27$	- 2.68	$=+2.21$
18	-0.15	$+0.01$	-0.12	$+0.32$	$+1.60$	- 1.45	$=+0.21$
19	$+0.01$	0.00	+ 0.02	0.00	$+0.78$	+ 0.97	$=+1.13$
20	$+0.10$	0.00	-0.38	$+0.18$	-2.05	$+1.36$	$=-0.77$
21	+ 0.11	0.00	-0.17	-0.11	$+0.33$	-1.45	$=+0.53$
22	+0.23	-0.01	-0.28	-0.45	+ 1.63	-1.35	$=+0.73$
23	-0.23	+ 0.01	-0.57	-0.06	+2.13	+ 0.86	$=-4.0$
24	-0.13	0.00	-0.12	-0.25	-0.86	+ 1.09	$=+0.95$
25	-0.17	0.00	-0.07	-0.56	-2.43	-0.35	- 0.67
26	+ 0.07	0.00	-0.09	- 0.11	+ 0.09	-1.54	$=+0$
27	+0.10	0.00	+ 0.18	-0.24	+ 1.52	$+1.83$	$=-0.65$
28	+ 0.01	0.00	0.00	+ 0.02	-0.62	+1.79	+ 3.82
29	-0.06	0.00	$+0.14$	-0.05	- 1.03	- 1.91	- 2.56
30	0.00	0.00	-0.07	+ 0.07	+ 0.49	-2.67	-0.52
31	-0.15	0.00	-0.15	$+0.29$	$+1.60$	-0.73	$=-0.13$
32	-0.10	0.00	-0.30	-0.06	- 1.04	+2.13	$=+0.55$
33	+ 0.21	+ 0.01	-0.38	$+0.27$	- 1.92	+ 0.18	-0.52
34	+ 0.16	0.00	-0.30	$+0.10$	- 1.27	-0.63	-0.79
35	+0.14	$+0.01$	-0.21	-0.20	$+0.59$	-1.54	- 0.38
36	$+0.22$	$+0.01$	-0.27	-0.39	$+1.41$	-1.47	$=+1.29$
37	+ 0.16	$+0.01$	-0.37	-0.44	+2.39	-0.81	-0.72
38	-0.16	-0.01	-0.12	-0.30	-0.98	$+1.12$	$+0.33$
39	-0.18	-0.01	-0.09	-0.56	- 2.43	-0.21	$=+2.84$
40	+ 0.17	+ 0.01	-0.42	-0.29	-1.88	-1.59	- 1.00
41	$+0.06$	0.00	-0.08	-0.10	$+0.20$	- 1.44	$+0.10$
42	$+0.06$	0.00	-0.06	-0.11	+031	-0.86	$=+0.03$
43	+ 0.13	$+0.01$	$+0.04$	-0.25	$+1.18$	-0.46	$=+0.64$
44	$+0.18$	+ 0.01	$+0.22$	-0.32	+ 1.78	$+0.86$	-0.92
45	-0.05	0.00	-0.03	-0.14	$+0.33$	$+2.36$	-0.04
46	$+0.02$	0.00	$+0.01$	$+0.05$	-0.80	+ 1.48	$=+0.66$
47	$+0.05$	0.00	-0.01	$+0.10$	- 1.04	$+0.90$	$=+0.64$
48	-0.03	0.00	-0.05	-0.05	$+0.03$	$+0.70$	$=+0.07$
49	-0.07	-0.01	-0.02	-0.13	-0.68	$+0.61$	-1.75
50	-0.09	-0.01	$+0.09$	-0.16	-1.15	$+0.14$	-0.90
51	-0.11	-0.01	$+0.19$	-0.12	- 1.37	- 1.06	$=-3.16$
52	-0.03	0.00	$+0.09$	-0.03	-0.71	- 2.35	-4.41
53	-0.03	0.00	-0.07	$+0.13$	$+0.84$	-2.49	-1.78
54	-0.14	-0.01	-0.10	$+0.29$	$+1.51$	- 1.26	$=+3.67$
55	-0.12	-0.01	-0.14	$+0.19$	$+1.45$	-0.21	$=+0.35$
56	$+0.04$	0.00	$+0.06$	-0.05	$+0.93$	+0.14	$=+1.39$
57	$+0.03$	0.00	+ 0.05	-0.02	$+0.90$	$+0.79$	$=+1.57$
58	-0.05	0.00	-0.10	-0.02	$+0.18$	+ 1.80	$=+2.67$
5	-0.08	-0.01	-0.30	-0.03	- 1.11	+2.13	$=+2.72$
60	$+0.16$	$+0.02$	-0.31	+ 0.13	-1.37	-0.50	

INTRODUCTION.

- Equations of condition.

No.

61	$+0.10 x$	$+0.01 y$	$-0.19 z$	$-0.01 u$	$-0.63 v$	$-0.90 w$	$=-0.01$
62	0.00	0.00	-0.01	0.00	-0.70	-0.73	$=-1.35$
63	$+0.04$	0.00	-0.07	-0.02	-0.37	$+1.15$	$=-1.50$
64	+ 0.13	$+0.01$	-0.20	-0.17	+ 0.44	-1.54	$=-0.74$
65	$+0.22$	$+0.03$	-0.34	-0.47	+2.04	-1.19	$=-3.38$
	-0.21	-0.03	-0.59	-0.02	$+2.26$	$+0.54$	$=+2.46$
67	-0.08	-0.01	-0.14	-0.09	$+0.16$	$+1.25$	$=-0.29$
68	-0.03	0.00	-0.03	-0.05	-0.40	$+0.89$	$=+3.00$
69	-0.04	0.00	-0.07	-0.03	$+0.26$	$+0.90$	$=+0.62$
70	-0.07	-0.01	-0.09	-0.11	-0.36	$+1.15$	$=-2.16$
71	-0.14	-0.02	-0.13	-0.25	-0.80	$+1.15$	$=-3.21$
72	-0.23	-0.03	-0.07	-0.49	-1.74	$+0.76$	$=-0.32$
73	-0.17	-0.02	-0.12	-0.56	-2.41	-0.21	$=+2.40$
74	$+0.16$	$+0.02$	-0.28	-0.18	-0.74	-1.75	$=-2.59$
75	+ 0.04	$+0.01$	-0.05	-0.07	$+0.33$	-1.30	$=-0.70$
76	+ 0.06	+ 0.01	-0.07	-0.10	+ 0.26	-0.86	$=-0.80$
77	+ 0.16	$+0.02$	$+0.09$	-0.30	$+1.43$	-0.21	$=+0.69$
78	$+0.19$	$+0.03$	$+0.21$	-0.34	+ 1.75	$+0.50$	$=+0.68$
79	$+0.13$	$+0.02$	$+0.20$	-0.30	+1.72	+1.54	$=-0.50$
80	$+0.01$	0.00	$+0.03$	-0.17	+1.22	$+2.20$	$=+0.45$
81	-0.04	-0.01	-0.03	-0.09	$+0.07$	+2.22	$=+0.26$
82	$+0.02$	0.00	$+0.01$	$+0.04$	-0.76	$+1.50$	$=-0.82$
83	$+0.04$	$+0.01$	0.00	+0.08	-0.99	$+1.02$	$=-0.72$
84	$+0.05$	+ 0.01	-0.04	$+0.10$	-1.06	$+0.30$	$=-0.07$
85	-0.08	-0.01	$+0.01$	-0.16	-0.88	+ 0.49	$=+0.83$
86	-0.11	-0.02	+0.12	-0.17	- 1.29	-0.09	$=-1.35$
87	-0.12	-0.02	$+0.17$	-0.16	-1.41	-0.56	$=+0.45$
88	-0.10	-0.02	$+0.20$	-0.09	-1.26	-1.63	$=-0.07$
89	-0.03	0.00	$+0.07$	-0.04	-0.61	-2.49	$=+0.58$
90	-0.09	-0.02	-0.05	$+0.23$	$+1.23$	-2.00	$=+1.14$
91	-0.11	-0.02	-0.17	+ 0.15	+ 1.24	$+0.17$	$=+0.70$
92	-0.04	-0.01	-0.07	-0.03	$+0.01$	$+0.75$	$=-0.49$
93	$+0.04$	$+0.01$	$+0.06$	-0.05	+ 0.96	+ 0.26	$=+0.83$
94	$+0.03$	+ 0.01	$+0.06$	-0.02	$+0.95$	$+0.69$	$=+0.99$
95	$+0.02$	0.00	$+0.04$	-0.01	$+0.82$	+ 1.06	$=+0.89$
96	-0.02	0.00	-0.04	0.00	$+0.44$	$+1.61$	$=+0.92$
97	-0.09	-0.02	-0.21	-0.05	-044	$+2.14$	$=+0.44$
98	-0.03	0.00	-0.31	$+0.05$	- 1.44	+2.02	$=+1.56$
99	+ 0.14	$+0.03$	-0.33	$+0.27$	-1.96	+1.25	$=-1.15$
100	$+0.20$	$+0.04$	-0.34	$+0.26$	-1.79	$+0.12$	$=-0.91$
101	$+0.17$	$+0.03$	-0.31	$+0.17$	-1.48	-0.35	$=+0.19$
102	+0.14	$+0.03$	-0.27	$+0.09$	-1.18	-0.62	$=-0.52$
103	+0.10	+0.02	-0.20	0.00	-0.72	-0.86	$=-0.60$
104	-0.01	0.00	+ 0.01	0.00	-0.79	-0.52	$=+0.02$
105	$+0.03$	$+0.01$	-0.06	-0.01	-0.43	-1.12	$=+0.74$

INTRODUCTION.

Equations of condition.

To apply to these equations the rigorous method of least squares would be very laborious: henee a method of "Equivalent Factors" has been used; the equations have been multiplied cither by whole numbers or by fractions which are ready multipliers. In this way, the following Normal Equations were derived from the equations of condition whieh have $\cos \eta . \Delta \theta$ for their absolute terms,

$$
\begin{array}{r}
+195.84 x-44.809 y+127.71 z+73.19 u-251.90 x^{\prime}+43.027 y^{\prime}-85.48 z^{\prime}+119.25 u^{\prime}=-8.77 \\
-44.78+47.099-83.68-62.84+41.04-48.460+41.17-96.06=-113.43 \\
+120.94-83.889+427.28+133.17-136.59+82.936-410.76+400.15 \\
+70.03-62.965+135.64+365.81-73.13+63.350+114.76+508.04 \\
=+162.30 \\
-255.15+42.172-138.12-80.06+425.61-27.182+91.22-132.67 \\
+40.68-48.373+82.84+61.99-26.27+51.815-41.45+94.13 \\
-83.42+41.537 \\
+422.53+119.76+102.83-40.091+64.06-11.82 \\
+112.81-95.792+406.68+505.65-126.69+94.62-120.34+902.21 \\
\\
\end{array}
$$

INTRODUCTION.

If u is eliminated from these equations, the result is

$+181.83 x$	$-32.213 y$	$+100.57 z$	$-237.27 x^{\prime}$	$+30.352 y^{\prime}-108.44 z^{\prime}$	$+17.60 u^{\prime}$	$=-48.20$	
-32.75	+36.284	-60.38	+28.48	-37.577	+60.88	-8.78	$=-79.58$
+95.45	-60.971	+377.90	-109.97	+59.874	-452.54	+215.20	$=+90.56$
-239.82	+28.394	-108.43	+409.63	-13.317	+116.34	-21.48	$=+135.76$
+28.81	-37.705	+59.85	-13.88	+41.080	-60.90	+8.04	$=+87.79$
-106.35	+62.147	-466.94	+126.77	-60.831	+606.49	-278.15	$=-88.38$
+16.01	-8.770	+219.18	-25.60	+7.053	-278.97	+199.94	$=-8.21$

And if from these z is eliminated, the result is

$+156.43 x$	$-15.987 y$	$-208.00 x^{\prime}$	$+14.418 y^{\prime}$	$+11.99 z^{\prime}$	$-39.67 u^{\prime}$	$=-72.30$
-17.50	+26.542	+10.91	-28.055	-11.42	+25.60	$=-65.11$
-212.43	+10.900	+378.08	+3.863	-13.51	+40.27	$=+161.74$
+13.69	-28.049	+3.54	+31.598	+10.77	-26.04	$=+73.45$
+11.59	-13.190	-9.11	+13.151	+47.33	-12.25	$=+23.52$
-39.35	+26.593	+38.18	-27.674	-16.50	+75.13	$=-61.46$

It is evident now, that since the principal co-efficients of z^{\prime} and u^{\prime} have fallen from 644.06 and 902.21 to +7.33 and 75.13, no very reliable values of these quantities can be obtained from these equations. The elimination of y gives

$+145.89 x$	$-201.43 x^{\prime}$	$-2.480 y^{\prime}$	$+5.11 z^{\prime}$	$-24.25 u^{\prime}$	$=-111.52$
-205.24	+373.60	+15.384	-8.82	+29.76	$=+188.48$
-4.80	-15.07	+1.950	-1.30	-1.01	$=+4.64$
+2.89	-3.69	-0.791	+41.65	+0.47	$=-8.84$
-21.82	+27.25	+0.435	-5.06	+49.48	$=+3.78$

The elimination of x from these gives

$$
\begin{array}{lllll}
+90.23 x^{\prime}+11.895 y^{\prime} & -1.63 z^{\prime} & -4.35 u^{\prime} & =+31.63 \\
+8.44 & +1.868 & -1.13 & +0.21 & =+0.97 \\
+0.30 & -0.742 & +41.55 & +0.95 & =-6.63 \\
-2.88 & +0.064 & -4.30 & +45.85 & =-12.89
\end{array}
$$

The elimination of x^{\prime} from these gives

$$
\begin{aligned}
& +0.755 y^{\prime}-0.98 z^{\prime}+0.62 u^{\prime}=-1.99 \\
& -0.782+41.56+0.96=-6.74 \\
& +0.444-4.35+45.71=-11.88
\end{aligned}
$$

The only condition, relative to the solar elements, which can be obtained with any weight, from these equations, is

$$
x^{\prime}+0.132 y^{\prime}=+0^{\prime \prime} .335
$$

That is, the mean longitude of the Sun of Hansen and Olufsen's Tables ought to be increased by a third of a second at the epoch 1863. As, however, these Tables will, probably, be used, for a long time to come, in computing the solar coördinates of the American Ephemeris, y^{\prime}, z^{\prime} and u^{\prime} will be put severally equal to zero; and as it has been decided to use the Pulkova constant of aberration, x^{\prime} will be put equal to $+0^{\prime \prime} .19$. With these assumptions, the values of x, y, z and u are

$$
x=-0^{\prime \prime} .502, \quad y=-2^{\prime \prime} .863, \quad z=-0^{\prime \prime} .040, \quad u=+0^{\prime \prime} .195
$$

The equation of condition derived from the Transits of 1761 and 1769 being excluded, the normal equations, determining the corrections of the inclination and the longitude of the ascending node, are

$$
\begin{gathered}
+2.51 x+0.390 y+1.84 z-0.67 u+163.26 v-0.42 w=+26^{\prime \prime} .02 \\
-4.46-0.105-0.29-1.06-5.86+188.58=+24.11 \\
35
\end{gathered}
$$

INTRODUCTION.

From these are obtained the following values of v and w.

$$
v=+0^{\prime \prime} \cdot 18_{\mathrm{z}} \quad w=+0^{\prime \prime} .12 \text { or } \Delta \delta^{\prime}=+2^{\prime \prime} .0
$$

But from the equation furnished by the Transits in 1761 and 1769,

$$
\Delta \delta^{\prime}=-17^{\prime \prime} .84
$$

If the first result is supposed to belong to 1855.0 , and the second to 1765.4 , the proper value of the correction is

$$
\Delta \Omega^{\prime}=+0^{\prime \prime} .9+0^{\prime \prime} 222 t
$$

The origin of the pretty large correction - $0^{\prime \prime} .02863$, of the mean motion of Venus, is easily shown. In his investigation, Leverrier (Annales, Vol. VI., p. 72) found the following value of Δn^{\prime},

$$
\Delta n^{\prime}=+0^{\prime \prime} .00035+0^{\prime \prime} .0689 \nu+0^{\prime \prime} .0959 \nu^{\prime}+0^{\prime \prime} .1207 \nu^{\prime \prime} ;
$$

but the value of this quantity used in forming his Tables is the first term only. If the values of ν, ν^{\prime} and $\nu^{\prime \prime}$ corresponding to the change from Leverrier's values of the masses to those here adopted, be substituted in this expression, the correction of Leverrier's mean motion, from this cause, is found to be

$$
\Delta n^{\prime}=-0^{\prime \prime} .01588
$$

Moreover, a comparison of the values of the Sun's mean longitude in the Tables of Hansen and Olufsen and of Leverrier, gives

$$
\text { Han. }- \text { Lev. }=-0^{\prime \prime} .93-0^{\prime \prime} .01074 t
$$

From the way in which Δn^{\prime} and $\Delta n^{\prime \prime}$ are involved in the equations of condition, it may be concluded, that if $\Delta n^{\prime \prime}$ were left indeterminate in the solution, the value of Δn^{\prime}, obtained, would be roughly,

$$
\Delta n^{\prime}=\left(\Delta n^{\prime}\right)+1.2 \Delta n^{\prime \prime},
$$

(Δn^{\prime}) denoting the value of Δn^{\prime} on the supposition of $\Delta n^{\prime \prime}=0$. Thus on making $\Delta n^{\prime \prime}=-0^{\prime \prime} .01074$, the correction of the mean motion of Venus, from this cause is

$$
\Delta n^{\prime}=-0^{\prime \prime} .01289
$$

The sum of these two corrections is

$$
\Delta n^{\prime}=-0^{\prime \prime} .02877
$$

which is almost identical with that derived from the equations of condition.
The increment of the motion of the node, $0^{\prime \prime} .222$, requires that the mass of Venus should be reduced from $\frac{1}{408134}$ to $\frac{1}{427240}$. This agrees with Leverrier's result: setting out with the mass 0.0000024885 , he found that it should be multipled by the factor 0.948 , which would make the mass $\frac{1}{423900}$.

The corrections to be added to the elements, with which we set out, to obtain the elements, from which the Tables are constructed, are

$$
\begin{aligned}
& \Delta L^{\prime}=-0^{\prime \prime} .502 \\
& \Delta \pi^{\prime}=+28^{\prime \prime} .46, \\
& \Delta \Omega^{\prime}=+0^{\prime \prime} .90+0^{\prime \prime} .222 t \\
& \Delta i^{\prime}=+0^{\prime \prime} .18, \\
& \Delta e^{\prime}=-0.000000196, \\
& \Delta n^{\prime}=-0^{\prime \prime} .02863
\end{aligned}
$$

The Tables have been compared with the occultation of Mercury by Venus, observed at Greenwich May 28, 1737. The observations made are

Greenwich M. T.

h m s 9 40 3.9.	Mercury distant from Venus not more than a tenth part of the diameter of Venus.		
9	48	10.2.	Mercury wholly occulted by Venus.

INTRODUCTION.

The position of Mercury being derived from Prof. Winloek's Tables, the apparent position of the two planets, as seen from Greenwich, and in longitude and latitude, are

And interpolating

Greenwich M. T.	$l^{\prime}-l$.	$b^{\prime}-b$.	Dist. of Centres.	
h	m	s	${ }^{\prime \prime}$	$\prime \prime$

With the addition of $0^{\prime \prime} .57$ for irradiation, the semi-diameters of Mercury and Venus are respectively $3^{\prime \prime} .98$ and $26^{\prime \prime} .97$: hence at the first observation, the distance of the limbs of the planet is $8^{\prime \prime} .01,2^{\prime \prime} .6$ more than a tenth part of the diameter of Venus; at the second observation, the distance of the centres is less than the difference of semi-diameters; hence the Tables are verified by the statement of the observer. Venus being, at the time, a thin erescent, and about half of Mercury's disc being illuminated, it is plain that it would be difficult for the obsever .o estimate the distance in fractional parts of the apparent diameter of Venus.

Leverrier's remarks on this occultation are impaired by a mistake made in the last line of his computation.

TABLES OF VENUS.

LONGITUDE OF TIE PRINCIPAL OBSERVATORIES FROM WASIING'ION.
West Longitudes are marked +

Place.	Longitude from Washington in Time.	In Decimals of a Day.	Place.	$\begin{gathered} \text { Longitude } \\ \text { from Washington } \\ \text { in 'Time. } \end{gathered}$	In Decimals of a Day.
Åbo,		- ${ }^{\text {d }} .2759296$	Leipsic,	- ${ }^{\text {h }} 5{ }^{\text {m }}{ }^{\text {\% }} 46.87$	-0.2484592
Albany, ${ }^{\text {\% }}$	-0 1312.87	-0.0091767	Leyden,	5268.57	-0.2264881
Allegheny,*	+0 1150.20	+0.008\%199	Liverpool,	- 45612.31	-0.20:6984
Altona,	-5 4758.54	-0.2116498	Madras,	-10 299.67	-0.4369175
Anu Arbor,	+0 2642.67	+0.0185 194	Madrid,	- 45327.00	-0.2037847
Armagh,	-4 4136.92	-0.1955662	Mannheim,	- 5423.06	-0.2375354
Athens,	-6 $43 \quad 7.58$	-0.2799488	Markrec,	- 43424.00	-0.1905556
Berlin,	-6 1147.77	-0.2512473	Marscilles,	- 52940.55	-0.2289415
Bilk,	-5 3517.77	-0.2328445	Melbourne,	-14 487.17	-0.6167496
Bonn,	-5 3636.02	-0.2337502	Milan,	- 54458.20	-0.2395625
Breslau,	-6 1622.19	-0.2613679	Modena,	- 55155.53	-0.2443927
Brussels,	-5 2541.29	-0.2261723	Moscow,	- 73829.29	-0.3183946
Cambridge, (Eng.)	-5 $\quad 838.08$	-0.2142949	Munich,	- 55438.00	-0.2462731
Cambridge, (Mass.)	-0 2341.51	-0.0164530	Naples,	- $6 \quad 5 \quad 10.95$	-0.2535990
Cape of Good Hope,	$\begin{array}{lll}-6 & 22 & 8.09\end{array}$	-0.2653711	Now York,*	- 01215.47	-0.0085124
Chieago,	+0 4214.26	+0.0293317	Nicolajew,	- 7166.53	-0.3028534
Cincinnati,*	+0 2946.94	+0.0206822	Olmütz,	- 61715.43	-0.29619811
Cliristiania,	$-551 \quad 6.69$	-0.2438274	Oxford,	-5 $\begin{array}{llll}6 & 9.79\end{array}$	-0.2105300
Clinton,	-0 633.08	-0.0045727	Padua,	- 55541.17	-0.2470013
Copenlagen,	-5 5831.05	-0.2489703	Palermo,	- 6 1 137.00	-0.2511227
Cracow,	-6 $28 \quad 2.80$	-0.2694768	Paramatta,	-15 1218.61	-0.6335191
Dorpat,	$\begin{array}{llll}-6 & 55 & 6.02\end{array}$	-0.2882641	Paris,	- 51733.02	-0.2205211
Dublin,	-4 4250.39	-0.1964165	Pliladelphia,*	-0 733.64	-0.005250.5
Durham,	-5 152.64	-0.2096370	Prague,	- 6 5 53.52	-0.2510917
Edinburgh,	-4 5529.34	-0.2052007	Pulkowa,	-7 931.06	-0.2982757
Florence,	-5 5315.12	-0.2453139	Rome,	- 5588.58	-0.2.187098
Geneva,	-5 3249.24	-0.2311344	San Fernaudo,	- 44322.42	-0.1967873
Georgetown,*	+0 006.20	+0.0000718	Santiago,	- 02530.00	-0.0177083
Göttingen,	-5 4758.49	-0.2416192	Senftenberg,	- 6143.00	-0.2597570
Gotha,	-5 5133.39	-0.2437892	Speyer,	- 54158.00	-0.2374769
Greenwich,	$\begin{array}{lllll}-5 & 8 & 12.39\end{array}$	-0.2140323	Stockholm,	- 62028.35	-0.2641939
Hamburg,	-5 $48 \quad 5.95$	-0.2417355	St. Petersburg,	925.87	-0.2982161
Helsingfors,	-6 481.32	-0.2833486	Sydney,	-15 131212.77	-0.6341758
Hudson,*	+0 1732.06	$+0.0121766$	Upsala,	- 61842.70	-0.2629942
Kasan,	-8 2441.14	-0.3501761	Utrecht,	- 52843.67	-0.2282832
Königsberg,	-6 3011.87	-0.2709707	Vienna,	- 61344.09	-0.2595381
Kremsmunster,	-6 4 15.03	-0.2532990	Wilna,	- 64923.33	-0.281297

Number of Days clapsed since the lieginning of the Jutian Period, at the Date Jan. 0 in Common Years, and Jun. 1 in Bisscatilc Years.									
Year.	Date in Mean Solar Days.	Year.	1) ato in MeanSoiar Days.	$\begin{aligned} & \text { PrAR IN } \\ & \text { THE CENTEL } \end{aligned}$		$\begin{gathered} \text { Das from } \\ \text { prevtous } \\ \text { Centminal } \\ \text { Date. } \end{gathered}$	TEAR in THE CENTURY		$\begin{aligned} & \text { Days from } \\ & \text { previons Cen- } \\ & \text { teunial Date. } \end{aligned}$
				If Negative.	If Ponitive.		If Niggative.	If Positive.	
-171313.	0	-1000	1356173	100	1	0	50	51	18262
-1712	365	-900	139:698	99	2	365	49 B .	$52 B$.	18628
- 1711	730	- 800	1129:2:3	98	3	780	48	53	18993
- 1710	1095	- 700	1465718	9713.	$4 B$.	1096	47	51	19358
-170913.	1161	- 600	150®273	96	5	1461	46	55	197:3
-4708	1820	-500	1538798	95	6	1826	45 B.	56 B.	20089
-4707	2191	- 400	1575323	94	7	2191	44	57	20.51
-1706	25.56	- 300	1611818	93 B .	8 B.	2557	43	58	20819
$-470.5 B$.	2922	- 200	16.18373	92	9	2922	42	59	2118.4
-4704	$3: 57$	-100	1681898	91	10	32 ¢7	418.	60 B.	21550
-4:03	3652	1	$1721 / 123$	90	11	3652	40	61	21915
-4702	4017	101	175% a 18	89 B.	$1: B$.	4018	39	62	22280
-47013.	4383	201	1791473	88	13	4383	38	63	22645
- $4 \% 00$	4748	301	$18: 30998$	87	14	4748	37 Br .	618.	23011
-4600	41273	401	18675:3	86	15	5113	36	65	23376
-4500	77798	501	1904018	$85 B$.	$16 B$.	5179	35	66	23741
-4100	1143:3	601	1910573	8.1	17	5814	34	67	24106
-4300	150818	701	1977098	83	18	6209	33 B .	$68 B$.	24472
-1200	187373	801	2013623	82	19	6574	33	69	21837
- 4100	$2 \because 3898$	901	2050148	81 B .	20 B .	69.10	31	70	25202
- 1000	260123	1001	2086673	80	21	7305	30	71	25567
-3900	296948	1101	$\stackrel{123198}{ }$	79	2.	7670	29 B .	$72 B$.	25933
- 3800	333473	1201	2159723	78	23	8035	28	73	26298
-3700	369998	1501	2196218	77 B .	$21 B$.	8401	27	74	26663
-3600	406523	1401	2232773	76	25	8766	26	75	27028
-3500	4130.18	1501	2269298	75	26	9131	2513.	76 B.	27394
-3100	479573	1583	2299238	74	27	9196	21	71	27759
-3300	516098	15818.	2299604	73 B .	$28 B$.	9862	23	78	28124
-3200	552623	1585	2299969	72	29	10227	22	79	28489
-3100	589148	1586	2300331	71	30	10592	21 B.	80 B .	28855
-3000	625673	1587	2300699	70	31	10957	20	81	29220
-2900	66:198	1588 B.	2301065	69 B.	$32 B$.	11323	19	82	29585
-2800	698723	1589	2301430	68	33	11688	18	83	29950.
-2700	735218	1590	2301795	67	31	12053	$17 B$.	84 B .	30316
-2600	771773	1591	2302160	66	35	12118	16	85	30681
-2500	808:98	$1592 B$.	2302526	6518.	36 B .	12781	15	86	31046
-2100	811823	1593	2302891	64	37	13149	14	87	31411
-2300	881318	1591	2303256	63	38	13514	133.	$88 B$.	31777
-2200	917873	1595	2303621	62	39	13879	12	89	32142
-2100	951398	$1596 B$.	2303987	61 B.	40 B .	14215	11	90	32507
-2000	990923	1597	2301352	60	41	14610	10	- 91	32872
-1900	1027.448	1598	2304717	59	42	14975	9 L.	92 B .	33238
-1800	1063973	1599	$230508:$	58	43	153310	8	93	33603
-1700	1100198	1600 B .	2305448	$57 B$.	44 B .	15706	7	94	33968
-1600	1137023	1601	2305813	56	45	16071	6	95	34333
-1500	1173518	1701	2312337	55	46	16436	$5 B$.	96 B .	31699
-1400	1210073	1801	2378861	51	47	16501	4	97	35061
-1300	1216598	1901	2415383	$53 B$.	48 B.	17167	3	98	35429
-1:200	1283123	2001	2451910	53	49	1753:	9	99	3579.1
-1100	1319648	2101	218843.1	51	50	17899	11.	100B.	36160
-1000	1358173	2201	2524958	50	51	18:6:		100	36159

Number of Days from Jan. 0 in Common Iears, and Jan. 1 in Bissextite Years.

Reduction of Hours, Minutes, and Sicomels of Time to Decimals of a Day.

Hours.	Decimal of a Day.	Min.	Decimal of a Day.	Min.	$\begin{aligned} & \text { Decimal of a } \\ & \text { Day. } \end{aligned}$	Sec.	$\begin{aligned} & \text { Decimal of it } \\ & \text { Day. } \end{aligned}$	Scc.	$\begin{gathered} \text { Decimal of a } \\ \text { Day. } \end{gathered}$
1	0.0116667	1	0.0006914	:31	0.0215:278	1	0.0000116	31	0.0003.388
2	0.081333:33	2	0.0013889	32	0.020^{2}	2	$0.0000: 31$	3:	0.0003701
3	0.1250000	3	0.00:20833	33	$0.02: 29167$	3	0.0000317	33	0.0003819
4	0.1666667	1	0.0027778	31	0.0236111	4	0.0000163	31	0.00039395
5	0.2083333	5	0.0031722	35	0.0213056	5	0.0000579	35)	0.0001051
6	0.2500000	6	0.0011667	36	0.0250000	6	0.0000691	36	0.000 .1167
7	0.2916667	7	0.00 .18611	37	0.02569 .11	7	0.0000810	:37	0.000-128:
8	0.3:3333:33:3	8	0.0055556	38	0.020613889	8	0.0000926	38	0.0004398
9	0.37 .50000	9	$0.006: 2500$	39	0.02708333	9 1	0.0001012	39	0.0001514
10	0.1166667	10	0.006944	40	0.027775	10	0.0001157	40	0.0001630
11	$0.45833: 333$	11	0.0076389	41	0.0284722	11	0.0001273	41	0.0001745
12	0.5000000	12	0.00833333	42	0.0291667	12	0.0001389	4.	0.0001861
$1: 3$	0.5116667	13	0.0090278	43	0.0298611	13	0.000150%	43	0.000497
11	0.58:3:33:33	14	0.0097292	44	0.0305556	14	0.000160	4.	0.0005093
15	0.6250000	15	0.0104167	45	0.0312500	15	0.0001736	45	0.0005208
16	0.6666667	16	0.0111111	45	0.0319414	16	0.0001852	46	0.0005321
17	0.70833333	17	0.0118056	47	0.03:6389	17	0.0001968	47	$0.00051 \cdot 10$
18	0.7500000	18	$0.012 \% 000$	48	0.0333333	18	0.0002083	48	0.0005555
19	0.7916667	19	0.0131941	49	0.0340278	19	0.0002199	49	0.0005671
20	0.83333333	20	0.0138889	50	0.0317222	20	0.0002315	50	0.0005787
21	0.8750000	21	0.0145833	51	0.0351167	21	0.0002131	51	0.0005903
2\%	0.9166667	22	0.0159778	52	0.0361111	22	0.0002516	52	0.0006019
23	0.958833833	23	0.015972:	53	0.0368056	23	0.0002662	53	0.0006134
21	1.0000000	24	00166667	51	0.0375000	24	0.0002778	51	0.0006250
		25	0.0173611	55	0.0381914	25	0.0002894	55	0.0006366
		26	0.0180556	56	0.0388889	26	0.0003009	56	0.0006481
		27	0.0187500	57	0.0395833	27	0.0003125	57	0.0006597
		28	0.0194444	58	0.040:2778	28	0.0003241	58	0.0006713
		29	0.0201389	59	0.0109722	29	0.0003356	59	0.0006829
		30	0.0:08333	60	0.0116667	30	0.0003472	60	0.00069 .4

TABLEV.

Periods of the Arguments with their multiples.

	1 Period.	2 Perinds.	3 Periods.
Argrument 1	22.4 .7008	$449^{\text {d }} .4016$	$674{ }^{\text {d }} 1023$
"\% 11	2385.9	4775.8	7165.8
" III	11987 ${ }^{1 .}$	$23974{ }^{\text {d }}$.	$3596{ }^{\text {d }}$.
" IV	$2959{ }^{4}$	$5918^{\text {4 }}$.	$8878{ }^{\text {d }}$
" V	$145.1^{\text {d }} .9$	$2909{ }^{4} .9$	$4364^{4} .8$
VI	$583{ }^{4.92}$	$1167^{4.84}$	$17.51^{\text {d }} .76$
" VII	$2.433^{1.16}$	$486{ }^{4} .33$	$729^{1} .49$
" VIII	$2200^{4} .6$	$440{ }^{1} .1$	$661{ }^{1 / .7}$
IX	$236^{4} .99$	$473{ }^{\text {d }} .98$	$710^{\text {d }} .98$
X	60 units	120 units	180 units
" XI	240 units	480 units	720 units
" XII	60 units	120 units	180 units
XIII	60 units	120 units	180 units
". XIV	36 units	72 units	108 units
" XV	$6799^{\text {c }}$. 3	$135.96{ }^{4} .5$	$2039.1{ }^{1 / 8}$
" XVI	$365{ }^{1.2}$	$730{ }^{\text {d }} .5$	1095'.7

Inercments of Arguments X-XIV for un inerease of 1,2 and 3 in the integer 1月4.

	Increment of $\mathrm{m}=1$.	Increment of $m=2$.	Increment of $m=3$.
Argument X	33.26	6.52	39.78
" XI	147.64	55.29	20:.93
" XII	19.6	39.3	58.9
" XIII	3.11	6.22	9.3 .4
" XIV	0.8	1.5	2.3

Mean Longitude, Arguments, \&.c., for W'ashington Mean Noon of Jan. 0 in common years, Jan. 1 in bisscxitilc years.

Year.	L	nin.	I.	11.	111.	IV.	V.	VI.	VII.
1750	$45^{\circ} 54 \quad$ "124	-163	173.9096	67.9	$11212^{\text {a }}$	2103^{41}	611.5	497.08	31.2
1751	2704131.89	161	89.5080	68.9	11607	2768	976.5	278.16	153.0
$1752 B$.	$\begin{array}{lllll}137 & 5 & 12.35\end{array}$	159	6.1064	69.9	11973	175	1342.5	60.24	32.7
1753	15242.00	158	146.4056	70.9	351	540	252.5	425.21	154.5
1754	2264011.66	156	62.0010	71.9	716	905	617.5	206.32	33.2
1755	912741.31	-15.5	202.3032	72.9	1081	1270	982.5	571.32	155.0
$1756 B$.	3175118.77	153	118.9016	73.9	1447	1636	1348.5	353.40	34.7
$1 \% .57$	1823848.42	151	31.5000	74.9	1812	2001	258.6	134.48	156.5
17.58	472618.08	150	174.7993	75.9	2177	2366	623.6	499.48	35.2
1759	2721347.73	148	90.3977	76.9	2542	2731	988.6	280.56	157.1
1760 B .	1383725.19	-146	6.9961	77.9	2908	137	1354.6	62.63	36.7
1761	32454.84	145	147.2953	78.9	3273	502.	264.7	427.63	158.6
1762	2281224.50	143	62.8937	79.9	3638	867	629.7	208.71	37.2
1763	925954.15	142	203.1929	80.9	4003	1232	994.7	573.71	155.1
$1764 B$.	3192331.61	140	119.7913	81.9	4369	1598	1360.7	355.79	38.7
1765	184111.27	-138	35.3898	82.9	4734	1963	270.7	136.87	160.6
1766	485830.92	137	175.6890	83.9	5099	2328	635.7	501.87	39.2
1767	273460.58	135	91.2874	84.9	5464	2693	1000.7	282.95	161.1
1768 B.	140	133	7.8858	85.9	5830	100	1366.7	65.03	40.7
1769	$457 \quad 7.69$	132	148.1850	86.9	6195	465	276.8	430.03	162.6
1770	2294437.35	-130	63.7834	87.9	6560	830	641.8	211.11	41.3
1771	94327.00	129	204.0826	88.9	6925	1195	1006.8	576.11	163.1
$1772 B$.	3205544.47	127	120.6811	89.9	7291	1561	1372.8	358.18	42.8
1773	1854314.12	125	36.2795	90.9	7656	1926	282.9	139.26	164.6
1774	$50 \quad 3043.78$	124	176.5787	91.9	8021	2291	617.9	504.26	43.3
1775	2751813.43	-122	92.1771	92.9	8386	2656	1012.9	285.31	165.1
1776 B .	1414150.89	120	8.7755	93.9	8752	63	1378.9	67.42	44.8
1777	62920.55	119	149.0748	94.9	9117	428	288.9	432.42	166.6
1778	2311650.21	117	64.6732	95.9	9482	793	653.9	213.50	45.3
1779	$\begin{array}{llll}96 & 4 & 19.86\end{array}$	116	204.9724	96.9	9847	1158	1018.9	578.50	$16 \% .1$
1780 B .	3222757.32	-114	121.5708	97.9	10213	1524	1384.9	360.58	46.8
1781	1871526.98	112	37.1692	98.9	10578	1889	295.0	141.66	168.6
1782	52.256 .64	111	177.4684	99.9	10943	2254	660.0	506.66	47.3
1783	2765026.29	109	93.0669	100.9	11308	2619	1025.0	287.74	169.1
1781 B.	$\begin{array}{llll}143 & 14 & 3.76\end{array}$	107	9.6653	101.9	11674	26	1391.0	69.81	48.8
1785	$8 \quad 133.41$	-106	149.9645	102.9	52	391	301.0	434.81	170.6
1786	23249	104	65.5629	103.9	417	756	666.0	215.89	49.3
1787	973632.73	103	205.8621	104.9	782	1121	1031.0	580.89	171.1
$1788 B$.	$\begin{array}{lll}321 & 0 & 10.19\end{array}$	101	122.4605	105.9	1148	1487	1397.0	362.97	50.8
1789	1884739.85	99	38.0590	106.9	1513	1852	307.1	144.05	172.6
1790	53359.51	-98	178.3582	107.9	1878	2217	672.1	509.05	51.3
1791	2782239.16	96	93.9566	108.9	2243	2582	1037.1	290.13	173.1
1792 B.	1444616.63	94	10.5551	109.9	2609	2948	1403.1	72.21	52.8
1793	93346.28	93	150.8513	110.9	2974	354	313.2	437.21	174.6
1794	2342115.94	91	66.4527	111.9	3339	719	678.2	218.29	53.3
1795	$99 \quad 845.60$	- 90	206.7519	112.9	3704	1084	1043.2	583.29	175.2
$1796 B$.	3253223.07	88	123.3503	118.9	4070	1450	1409.2	365.36	54.8
1797	$\begin{array}{llll}190 & 19 & 52.72\end{array}$	86	38.9488	114.9	4435	1815	319.2	146.44	176.7
1798	$55 \quad 782.38$		179.2480	115.9	4800	2180	681.2	511.44	55.3
1799	2795452.04	-83	94.8164	116.9	5165	2545	1049.2	292.52	177.2

Year.	VIII.	Ix.	X	XI.	XII.	XIII.	Niv.	Log. sin i.	$350^{\circ}-8$
17.50	55.9	28.28	43.96	193.18	48.7	58.45	22.7	8.7720788	$285{ }^{3} 31416.8$
1731	200.3	156:	50.18	8.77	28.0	4.67	24.2	0802	${ }_{313} 11.3$
1752b.	125.2	48.30	56.99	${ }_{61.06}$	$7:$	10.89	25.7	0815	3311.8
1753	19.1	176.31	30.25	211.70	26.9	14.01	26.5	0s:29	3239.3
1754	193.5	67.3:3	36.77	26.99	6.1	20.23	28.0	0812	32 6.9
175.5	117.1	195.34	10.03	171.63	25.7	23.31	28.7	8.7720856	28.3131 .4
175673.	42. 2.	87.35)	16.55	229.9\%	5.0	29.56	30.2	0870	$\begin{array}{lll}31 & 1.8 \\ 30\end{array}$
17.57	186.7	215.36	23.06	45.21	41.2	35.79	31.7	0888	3029.4
17.58	110.5	106.38	56.39	192.86	3.9	38.90	32.5	0897	2955.9
1759	31.4	231.38	2.81	8.15	43.1	45.12	34.0	0911	2921.4
1760 B.	179.8	12 C .10	9.36	63.41	22.4	51.35	33.5	8.7720924	2852851.9
1761	103.7	17.12	42.62	211.08	42.0	51.46	0.2	0938	2819.1
1762	27.6	145.43	49.13	26.37	21.2	0.68	1.7	0951	${ }^{27} 47.0$
1763	172.0	36.44	22.39	174.02	40.9	3.79	2.5	0965	$\stackrel{27}{ } 14.5$
1761 B.	96.9	165.15	28.91	229.31	20.1	10.02	4.0	0979	2641.9
1765	20.7	56.47	35.43	44.60	59.4	16.24	5.5	8.7720992	$285 \quad 269.5$
1766	16.5 .2	181.47	8.68	192.21	19.0	19.35	6.2	1006	2537.0
1767	89.0	75.49	15.20	7.53	58.2	25.58	7.7	10:0	254.5
17683 B.	13.9	201.50	21.72	62.82	37.5	31.80	9.2	1033	2432.0
1769	15.4	95.51	51.98	210.46	57.1	31.91	10.0	1017	2359.5
17\%0	82.2	223.52	1.19	25.75	36.4	41.14	11.5	8.7721080	2852327.0
1771	6.1	114.51	34.75)	173.10	56.0	44.25	12.3	1071	2.2 51.6
17728.	151.5	6.55	41.27	228.69	35.2	50.47	13.8	1088	2222.0
1773 1774	75.1 219.8	$\begin{array}{r}134.56 \\ 25.58 \\ \hline\end{array}$	${ }_{21.05}^{47.79}$	43.98 191.62	14.5 31.1	56.69 59.81	15.0	11115	${ }_{21} 214.17$
1775	143.7	153.59	27.56	6.91	13.4	6.03	17.5	8.7721128	2852044.6
1776 B.	68.6	45.60	31.08	62.20	52.6	12.25	19.0	1142	2012.1
1777	213.0	173.61	7.31	209.85	12.2	15.37	19.8	1156	1939.6
1778	136.9	61.63	13.86	25.14	51.5	21.59	21.3	1169	197.1
1779	60.7	192.64	47.12	17278	11.1	24.70	22.0	1183	1831.6
1780B.	206.2	81.65	53.63	228.07	50.4	30.92	23.5	8.7721197	$28518 \quad 2.1$
1781	130.0	212.66	0.15	43.26	29.6	37.15	25.0	1210	1729.6
178\%	53.9	103.68	33.41	191.00	49.2	40.26	25.8	1224	1657.1
1783	199.3	231.68	39.93	6.29	28.5	46.48	27.3	1237	1621.7
17843.	123.2	123.70	46.44	61.58	7.7	52.71	28.8	1251	1552.1
1785	47.1	14.72	19.70	209.23	27.4	55.82	29.5	8.7721265	2851519.6
1786	191.5	142.72	20.22	21.52	6.6	2.04	31.1	1278	1447.1
1787	115.4	33.74	59.48	172.16	20.2	5. 15	31.8	1292	1414.7
1788 B.	40.2	162.75	6.00	227.45	5.5	11.38	33.3	1306	1342.1
1789	181.7	53.76	12.51	42.74	41.7	17.60	34.8	1319	$13 \quad 9.6$
1790	108.5	181.77	45.77	190.39	4.4	20.71	35.6	8.7721333	2851237.2
1791	32.4	72.79	52.29	5.68	43.6	26.91	1.1	1316	124.7
17923.	177.8	201.80	58.81	60.97	22.9	33.16	2.6	1360	1132.1
1793	101.7	92. 81	32.06	208.61	42.5	36.27	3.3	1374	1059.7
1791	25.6	220.82	38.58	23.90	21.7	42.50	4.8	1387	1027.2
1795	170.0	111.81	11.84	171.54	41.4	45.61	5.6	8.7721401	28.5951 .7
1796 B.	91.9	3.85	18.36	226.83	20.6	51.83	7.1	- 1415	922.1
1797	18.7	131.86	24.87	42.12	59.9	58.05	8.6	1428	849.7
1798	163.2	22. 88	58.13	189.77	19.5	1.17	9.3	1412	817.2
1799	87.0	150.89	4.65	5.06	58.7	7.39	10.8	8.7721456	$285 \quad 741.7$

Mean Longitude, Arguments, (fe., for Wushington Moren Noon of Jan. 0 in comuron years, Jun. 1 in bissextile yeurs.

Year.	L.	512.	I.	II.	III.	IV.	V.	VI.	VII.
1800	114 4: 21.70	-81	10.4 .48	117.9	5530	$2910^{\text {a }}$	1414.4	733.60	50.8
1801	92951.36	80	150.7.41	118.9	5895	315	324.3	438.60	177.7
180:	2311721.02	78	66.3125	119.9	6260	680	689.3	219.68	56.3
1803	$99 \quad 450.67$	77	206.6117	120.9	6625	1015	1054.3	0.76	178.2
$1804 B$.	3252828.14	75	123.2101	121.9	6991	1411	1420.3	366.76	57.8
1805	$190 \quad 15 \quad 57.80$	-73	38.8386	122.9	7356	1776	330.4	147.84	179.7
1803	$\begin{array}{llll}55 & 3 & 27.46\end{array}$	72	179.1378	123.9	77:1	2141	695.4	512.84	58.3
1807	$\begin{array}{lllllllllllll}279 & 50 & 57.12\end{array}$	70	94.7362	121.9	8086	2503	1060.4	293.91	180.2
180813.	1461431.58	68	11.3316	125.9	815:	287:	1426.4	75.99	59.9
1809	11 2 4.24	67	151.6339	1:6.9	8817	278	336.4	410.99	181.7
1810	2354933.30	-65	67.2323	127.9	9182	613	701.4	222.07	60.4
1811	$10037 \quad 3.56$	61	207.5315	128.9	9547	1008	1066.4	3.15	182.2
1812B.	$327 \quad 041.03$	62	124.1299	129.9	9913	1374	1433.4	369.15	61.9
1813	1914810.69	60	39.7284	130.9	10278	1739	342.5	150.23	183.7
181.4	563540.35	59	180.0276	131.9	10643	2104	707.5	515.23	62.4
1815	2812310.01	-57	95.6260	132.9	11008	2469	1072.5	296.31	184.2
$1816 B$.	1474647.47	55	12.2215	133.9	11374	2835	1438.5	78.39	63.9
1817	123178.13	51	152.5237	134.9	11739	241	348.6	443.39	185.7
1818	2372146.79	52	68.1221	135.9	116	606	713.6	224.46	64.4
1819	102916.45	51	208.4213	136.9	481	971	1078.6	5.54	186.2
1820 B .	3283253.92	-49	125.0198	137.9	847	1337	1444.6	371.54	65.9
$18: 1$	1932023.58	47	40.6182	138.9	1212	1702	354.6	152.6:	187.7
18:2	538503.24	46	180.9174	139.9	1577	2067	719.6	517.62	66.4
18:3	$2825.52: 20$	41	96.5159	140.9	1942	243:	1084.6	298.70	188.2
18:1 B.	$149 \quad 19 \quad 0.37$	42	13.1143	141.9	2308	2798	1450.6	80.78	67.9
1825	14630.03	-41	153.4135	142.9	2673	204	360.7	445.78	189.7
18:2 6	2385359.69	39	69.0119	143.9	3038	569	725.7	226.86	68.4
$18: 7$	1034129.36	38	209.3112	14.9	3103	931	1090.7	7.94	190.2
18:8B.	$330 \quad 5 \quad 6.82$	36	125.9096	145.9	3769	1300	1.8	373.94	69.9
$18: 9$	1945230.49	31	41.5080	146.9	4134	1665	366.8	155.02	191.7
1830	5940 6.15	-33	181.8073	147.9	4199	2030	731.8	520.02	70.4
1831	2842735.81	31	97.4057	148.9	4861	2395	1096.8	301.09	192.2
1832 B.	1505113.28	29	14.0041	149.9	5230	2761	7.8	83.17	71.9
1833	153842.91	28	151.3031	150.9	5595	167	372.8	448.17	193.8
1831	2402612.60	26	69.9018	151.9	5960	532	737.8	229.25	72.4
1835	1051349.27	-25	210.2010	152.9	6325	897	1109.8	10.33	194.3
183613.	3313719.73	23	126.7995	153.9	6691	1263	13.9	376.33	73.9
1837	1962449.40	21	42.3979	151.9	7056	1628	378.9	157.41	195.8
1838	611219.06	20	182.6971	155.9	7421	1993	743.9	522.41	74.1
1839	2855948.72	18	98.2956	156.9	7786	2358	1108.9	303.49	196.3
1810 B .	1522326.19	-16	14.8940	157.9	8152	2724	19.9	85.57	75.9
1811	171055.86	15	15.1932	158.9	8517	129	384.9	450.57	197.8
1812	2415825.52	13	70.7917	159.9	8882	494	749.9	231.64	76.4
1813	1064555.18	12	211.0909	160.9	92.17	859	1114.9	12.72	198.3
181433.	3331832.65	10	127.6893	161.9	9613	1225	26.0	378.72	77.9
1845	$197 \quad 57 \quad 2.32$	-8	43.2878	162.9	9978	1590	391.0	159.80	199.8
1816	624431.98	7	183.5870	163.9	10343	1955	756.0	524.80	78.5
1817	287321.65	5	99.1854	164.9	10708	2320	1121.0	305.88	200.3
181313.	1535539.12	3	15.7839	165.9	11074	2686	32.1	87.96	80.0
1819	18438.78	- 2	156.0831	166.9	11439	92	397.1	452.96	201.8

Mean Lontgitude, Arguments. de., for Trashington Mean Noon of Jan. 0 in common years, Jan. 1 in bissextile years.

Mean Longitude, Arguments, \&.c., for Washington Mean Noon of Jan. 0 in common years, Jan. 1 in bisscxtile ycars.

Year.	L	13.	I.	II.	III.	IV.	V.	VI.	VII.
1850	$2133^{30} 303$	0	71.6815	167.9	$11801^{\text {a }}$	$457{ }^{\text {d }}$	76.2 .1	234.04	80.5
1851	108188.11	1	211.9808	168.9	18:	822	1127.1	15.12	20:.3
$1852 B$.	3314145.58	3	128.5792	169.9	518	1188	38.1	381.12	82.0
1853	1992915.25	5	44.1776	170.9	913	1553	40:3.1	$16 \pm .19$	202.8
18.51	6 ± 1641.92	6	184.4769	171.9	1278	1918	768.1	527.19	82.5
1855	$289-414.58$	8	100.0753	172.9	1613	2283	1133.1	308.27	201.3
$1856 B$.	1552750.05	10	16.6738	173.9	2009	26.19	41.2	90.35	81.0
1857	2015021.72	11	156.9730	171.9	2374	55	409.2	455.35	20.5
1858	245 : 51.39	13	72.5715	175.9	2739	420	774.2	2:36.43	84.5
1859	1095021.05	14	212.8707	176.9	3104	785	1139.2	17.51	206.3
1860 B .	:336 13 [58.53	16	129.4691	177.9	3450	1151	50.3	383.51	86.0
1861	$201 \quad 128.19$	18	45.0675	178.9	3835	1516	415.3	164.59	207.8
1862	$65 \quad 4857.86$	19	185.3668	179.9	4200	1881	780.3	529.59	86.5
1863	2903627.53	21	100.965°	180.9	4545	2246	1145.3	310.67	208.3
$1861 B$.	$157 \quad 0 \quad 5.00$	23	$17 \cdot 5937$	181.9	4931	2612	56.3	92.75	88.0
1865	214731.67	24	157.86:9	189.9	5296	18	421.3	457.75)	209.8
1866	2163.54 .34	26	73.4613	183.9	5661	383	786.3	238.80	88.5
1867	1112231.00	27	213.7606	184.9	60:6	748	1151.3	19.90	210.3
$1868 B$.	33374611.48	29	130.3590	185.9	6392	1114	62.4	355.90	90.0
1869	20: 3341.15	31	45.9575	186.9 .	6757	1479	427.4	166.98	211.8
1870	672110.82	32	186.2567	187.9	7122	1844	792.4	531.98	90.5
1871	29: 840.49	31	101.8551	188.9	7487	2209	1157.4	313.06	212.4
1872B.	158 3: 17.96	36	18.4536	189.9	7853	2575	68.5	95.14	92.0
1873	231947.63	37	158.7528	190.9	8218	2910	433.5	460.14	213.9
1874	$\begin{array}{lll}218 & 717.30\end{array}$	39	74.3513	191.9	8583	316	798.5	241.22	92.5
1875	1125446.97	40	214.6505	192.9	8948	711	1163.5	22.30	214.4
1876 B .	3391824.45	42	131.2489	193.9	9314	1077	74.5	388.30	94.0
1877	2015 51.12	44	46.8474	194.9	9679	1442	439.5	169.37	215.9
1878	6853×3.39	45	187.1466	195.9	10044	1807	80.1 .5	534.37	91.5
1879	2934053.46	47	102.7451	196.9	10409	2172	1169.5	315.45	216.4
1880 B.	$160 \quad 430.94$	49	19.3135	197.9	10775	2538	80.6	97.53	96.0
1881	24520.61	50	159.6428	198.9	11140	2903	445.6	462.53	217.9
188:	2493930.28	52	75.2412	199.9	11505	308	810.6	243.61	96.6
1883	1142659.95	53	215.5104	200.9	11870	673	1175.6	24.69	218.4
$1884 B$.	$310 \quad 5037.43$	55	132.1389	201.9	249	1039	86.6	390.69	98.1
1885	$20538 \quad 7.10$	57	47.7373	202.9	615	140.1	451.6	171.77	219.9
1886	$70 \quad 2536.77$	58	188.0366	203.9	980	1769	816.6	536.77	98.6
1887	295136	60	103.63.50	204.9	1315)	2131	1181.6	317.85	220.4
1888 B.	1613643.93	62	20.2335	205.9	1711	2500	92.7	99.92	100.1
1889	262113.60	63	160.53:27	206.9	2076	2865	457.7	461.92	221.9
1890	2511143.27	65	76.1312	207.9	2141	271	82.27	246.00	100.6
1891	1155912.95	66	216.4301	208.9	2806	636	1187.7	27.08	202.1
189:B.	3122250.43	68	. 133.0289	209.9	3172	101\%	98.8	393.08	102.1
1893	2071020.10	70	48.6273	210.9	3537	1367	463.8	174.16	223.9
1894	715749.78	71	188.9265	211.9	3902	1732	828.8	539.16	10:2.6
1895	2964519.45	73	104.5950	212.9	4267	2097	1193.8	320.24	221.4
189613.	$163 \quad 856.93$	75	21.1235	213.9	4633	2163	104.8	102.32	101.1
1897	275626.61	76	161.4227	214.9	4998	28:28	469.8	467.32	20.5 .9
1898	2524356.29	78	77.0211	215.9	5363	233	831.8	248.40	104.6
1899	1173125.96	79	217.3:0.1	216.9	57.28	599	1199.8	29.48	226.4

Mean Longitude, Arguments, \&•e, for Wrashington Mean Noon of Jan. 0 in common years, Jan. I in bissextile years.

$7 v$

Mean Longituck, Argunents, dec., for Wrashington Mean Noon of Jen. 0 in common years, Jan. 1 in bissextile years.

Year.	L.	n.	1.	II.	III.	IV.	V.	VI.	VII.
1900	$24{ }^{2}$	81	$13: 2.9188$	217.9	$6093{ }^{\text {a }}$	$964{ }^{\text {a }}$	109.9	391.48	$10 \% .1$
1901	207625.31	83	48.5173	218.9	6458	1329	474.9	175.5.5	226.9
190:	715351.99	81	188.8165	219.9	6823	1694	839.9	510.55	105.6
1003	2964121.67	86	104.4150	$2 \because 0.9$	7188	2059	1201.9	321.63	227.4
$1901 B$.	$163 \quad 5 \quad 2.15$	88	21.0134	$2: 21.9$	7554	2425	116.0	103.71	107.1
1905	275231.83	89	$161.31: 7$	22.9	7919	2790	481.0	468.71	228.9
1906	$\begin{array}{llll}252 & 10 & 1.51\end{array}$	91	76.9111	223.9	8281	196	816.0	249.79	107.6
1907	$117 \quad 27 \quad 31.19$	92	217.2104	221.9	86.19	561	1211.0	30.87	229.5
$1908 B$.	3438518.67	94	133.8058	225.9	9015	927	122.0	396.87	109.1
1909	$208 \quad 3838.35$	96	49.40\%3	$2 \geqslant 6.9$	9380	1:292	487.0	177.95	231.0
1910	73268.03	97	189.7065	227.9	9745	1657	852.0	51.95	109.6
1911	29813387.71	99	105.3050	228.9	10110	2022	1217.0	324.03	231.5
19128.	$161: 3715.20$	101	21.9031	229.9	10176	2388	128.1	106.10	111.1
1913	292141.88	102	16:.20:7	230.9	108.11	2753	493.1	471.10	233.0
1914	2511214.56	104	77.8011	231.9	11206	158	858.1	252.18	111.6
1915	1185941.21	105	218.1004	232.9	11571	523	1223.1	33.26	233.5
19168.	$345 \sim 2: 31.53$	107	134.6988	233.9	11937	889	134.2	399.26	113.1
1917	2101051.41	109	50.2973	234.9	315	1254	499.2	180.34	235.0
1918	1745821.09	110	190.5965	235.9	680	1619	864.2	515.34	113.6
1919	2994550.77	$11:$	106.1950	236.9	1045	1981	12:29.2	326.42	235.5
1920 B .	$166 \quad 9 \quad 28.26$	114	22.7935	237.9	1411	2350	140.2	108.50	115.2
1921	$30 \quad 5657.95$	115	163.0927	238.9	1776	2715	505.2	473.50	237.0
1922	2554427.63	117	78.6912	1.0	2141	121	870.2	251.58	115.7
1923	1:20 3157.31	118	218.9901	2.0	2506	486	1235.2	35.65	237.5
$1924 B$.	3165531.80	120	135.5889	3.0	2872	852	146.3	401.65	117.2
1925	$\begin{array}{llll}211 & 43 & 4.49\end{array}$	122	51.1873	4.0	3237	1217	511.3	182.73	239.0
1926	$7630 \quad 31.17$	123	191.4866	5.0	3602	1582	876.3	547.73	117.7
1927	$30118 \quad 3.86$	125	107.0850	6.0	3967	1947	12.11 .3	328.81	239.5
1928 B.	1674141.35	127	23.6835	7.0	4333	2313	15\%. 4	110.89	119.2
1929	322911.04	128	163.98:27	8.0	4698	2678	517.4	475.89	211.0
1930	2571640.72	130	79.5812	9.0	5063	84	882.4	256.97	119.7
1931	122410.41	131	219.8804	10.0	5428	449	1247.4	38.05	241.5
$1932 B$.	3182747.90	133	136.4789	11.0	5794	815	158.4	404.05	121.2
1983	$\begin{array}{lllll}213 & 15 & 17.59\end{array}$	135	52.0774	12.0	6159	1180	523.4	185.13	213.0
1934	$78 \quad 247.27$	136	192.3766	13.0	6524	1545	888.4	550.13	121.7
1935	3025016.96	138	107.9751	14.0	6889	1910	1253.4	331.20	0.4
$1936 B$.	1691351.46	140	24.5735	15.0	7255	2276	164.5	113.28	123.2
1937	$\begin{array}{llll}31 & 1 & 21.15\end{array}$	141	164.8728	16.0	7620	2641	529.5	478.28	1.9
1938	$258.48 \quad 53.83$	143	80.4712	17.0	7985	47	894.5	259.36	123.7
1939	1233623.52	144	220.7705	18.0	8350	412	1259.5	40.44	2.4
1940 B .	$\begin{array}{llll}350 & 0 & 1.02\end{array}$	146	137.3630	19.0	8716	778	170.5	406.44	125.2
1941	2144730.71	148	52.9674	20.0	9081	1143	535.5	187.52	3.9
1912	79350.40	149	193.2667	21.0	9446	1508	900.5	552.52	125.7
19.13	3012230.09	151	108.8651	22.0	9811	1873	1265.5	333.60	4.4
$1944 B$.	$17046 \quad 7.59$	153	25.4636	23.0	10177	2239	176.6	115.68	127.2
1915	353337.28	154	165.7628	24.0	10542	2604	541.6	480.68	5.9
1916	260216.97	156	81.3613	25.0	10907	10	906.6	261.76	127.7
19.47	$\begin{array}{llll}125 & 8 & 36.66\end{array}$	157	221.6606	26.0	11272	375	1271.6	42.83	6.4
$19.18 B$.	351 216 10	159	138.2590	27.0	11638	741	182.7	408.83	129.2
1949	2161943.85	161	53.8575	28.0	15	1106	547.7	189.91	7.9

Mecen Lemgitule, Argments. de., for Washington Meren Noon of Jen, 0 in common yects, Jen. 1 in bissertile yeurs.										
lear.	VIII.	IX.	ズ.	XI.	XII.	XIII.	XIV.	Log. sin i.	360°	- 8
1900	111.5	69.15	0.9 .07	218.80	37.2	37.7:	26.1	8.772.882	281	13 \% 0.8
1901	65.3	197.16	5.58	31.09	16.5	43.91	27.6	28:37		12.28 .3
190:	009.8	88.17	38.81	181.73	36.1	47.06	28.4	28.51		1155.8
1903	1333.6	216.18	15.36	2:37.0:	15.4	53, 2.28	29.9	2861		1123.3 .3
190183.	58.5	108.20	51.88	52.31	51.6	59.50	31.1	2878		10) 50.7
1905	202.9	2:36.21	25.13	199.9G	11.3	2.69	33.2	8.77 20s91	281	1018.2
1906	1:26.8	127.2.	31.65	15.25	533.5	8.81	:33.7	- 0.5		9) 45.7
190%	50.7	18.21	4.91	162.89	13.1	11.9 .5	:31.1	2918		() 13:3
$190 \sim B$.	196.1	117.25	11.13	218.18	52.1	18.17	33.9	293:		840.6
1909	1:0.0	38.26	17.95	33.47	31.6	21.40	1.5	29.15		$8 \quad 8.1$
1910	43.5	166.27	51.20	181.12	51.3	27.51	2.2	8.77229 .9	281	735.6
1911	188.3	57.29	57.72	236.41	30.5	333.73	3.7	297:		$7 \quad 3.0$
$1912 B$.	113.1	186.29	4.21	51.70	9.8	39.96	5.2	2986		(6)30.1
1913	37.0	77.31	37.50	199.31	29.1	43.07	5.9	2999		557.9
1911	181.4	205.32	41.01	14.63	8.6	49.29	7.1	3012		525.1
1915	10:. 3	96.33	17.27	16.2.87	28.3	59.40	8.2	8.77230e6	28.1	452.9
$1916 B$.	30.2	225.31	233.79	217.56	7.5	58.633	9.7	30339		420.3
1917	17.6	116.36	30.31	32.85	46.8	4.85	11.2	3053		347.8
1918	98.5	7.38	3.57	180.50	6.1	7.96	11.9	3066		315.3
1919	23.3	135.38	10.08	235.79	45.6	14.19	13.4	3080		242.8
19003.	167.8	27.40	16.60	51.08	24.9	20.41	15.0	8.7723093	28.1	210.2
1921	91.6	155.41	49.86	198.72	41.5	23.53	15.7	3107		137.6
192:	15.5	46.12	56.38	14.01	23.8	29.75	17.2	3120		15.1
1923	159.9	174.43	29.63	161.66	43.4	32.86	18.0	$31: 31$		033.6
19:13.	81.8	66.45	36.15	216.95	22.6	39.08	19.5	3147	281	$0 \quad 0.0$
1925	8.7	191.46	42.67	32.24	1.9	45.30	21.0	8.7723160	283	5927.5
192\%	153.1	85.47	15.93	179.88	21.5	48.42	21.7	3174		5855.0
1927	77.0	213.48	20.45	235.17	0.8	54.64	23.2	3187		5820.5
$1928 B$.	1.9	105.50	28.96	50.46	40.0	0.86	24.7	$3: 01$		5749.9
1929	1:6.3	233.50	2.22	198.10	59.6	3.97	25.5	3214		5717.3
1930	70.2	121.52	8.74	13.39	38.9	10.20	27.0	8.7728228	283	
1931	214.6	15.51	42.00	161.01	58.5	13.31	27.7	3211		5612.3
$193: 2$.	139.5	141.55	48.51	216.33	37.8	19.53	29.2	3825		5539.7
1933	63.3	35.56	55.03	31.62	17.0	25.76	30.7	3268		$55 \quad 7.2$
1931	207.8	163.57	28.29	179.26	36.6	28.87	31.5	3282		5134.7
193.)	131.6	51.59	31.81	231.55	15.9	35.09	33.0	8.7723:95	283	51.2 .1
$1936 B$.	56.5	183.59	41.32	49.81	55.1	41.32	31.5	83309		5329.5
1937	200.9	74.61	14.58	197.19	14.8	41.43	35.3	3322		5257.0
1938	121.8	202.62	21.10	12.78	51.0	50.65	0.8	3333		5224.5
1939	48.7	93.63	54.36	160.42	13.6	53.76	1.5	3349		5152.0
1910 B .	191.1	22.64	0.88	215.71	52.9	59.99	3.0	8.7723362		
1911	118.0	113.66	7.39	31.00	32.1	6.21	4.5	3376		5046.9
1912	41.8	4.67	40.65	178.64	51.8	9.32	5.3	3389		50.11 .3
1913	186.3	13:.68	47.17	233.9:3	31.0	15.55	6.8	3103		4941.8
$1944 B$.	111.1	24.70	53.69	49.22	10.3	21.77	8.3	3116		49 9.2
1945	35.0	15.2 .71	26.95	196.57	29.9	21.88	9.0	8.7723430	283	4836.7
1916	179.4	43.72	33.46	12.16	9.1	31.10	10.5	3.413		484.2
1917	103.3	171.73	6.72	159.80	28.8	31.20	11.3	3157		4731.6
$1918 D$.	28.2	63.75	13.21	215.09	8.0	40.44	12.8	3170		4659.0
1919	172.6	191.76	19.76	30.38	47.3	46.66	14.3	8.7723184	283	4626.5

Motion of mean Longitude and of $-\Omega$; and Fraction of Year.

$\begin{gathered} \text { Common } \\ \text { Year. } \end{gathered}$	Bissextile Year.	Mution of Alean Longitude.	Motion of $360^{\circ}-8$	Fract. of Year	Year.	Motion of Mean Longitude.	Motion of $360^{\circ}-8$	Fract. of Year.
Jan. 0	Jan. $\begin{array}{ll} \\ & 1 \\ & 2 \\ & 3 \\ & 1\end{array}$	- 111	-0.0	0.000	Mar.	$96 \quad 7 \quad 43.44$	-5.3	0.164
		$\begin{array}{llll}0 & 0 & 0.00\end{array}$						
		$136 \quad 7.81$	0.1	0.003		1774356.25	-5.3	0.167
		31915.61	0.2	0.00%		99204.05	5.5	$0.1 \% 0$
		44823.42	0.3	$0.00{ }^{\circ}$		1005611.86	5.6	0.173
4	5	62431.23	-0.4	0.011	5	1023219.67	-5.7	0.175
5	6	$8 \quad 0 \quad 39.04$	0.4	0.014	6	1048397.48	5.8	0.178
6	7	93646.84	0.5	0.016	7	1054435.23	5.9	0.181
7	8	111254.6 J	0.6-0.7	$0.01!$	8	1072043.09	6.0	0.183
8	9	12492.46		0.022	9	1035650.90	-6.1	0.186
9	10	14.2510 .97	0.8	0.02 .5	10	1103258.70	6.1	0.189
10	11	$\begin{array}{llllllllll}16 & 1 & 18.07\end{array}$	0.8	0.047	11	$11: 36.51$	6.2	0.199
11	12	173795.88	1.0	0.030	12	11345 14.3?	6.3	0.194
12	13	191333.69	- 1.1	0.033	13	1152129.13	-6.4	0.197
13	14	204941.50	1.2	0.036	14	1165729.93	6.5	0.200
14	15	22.2549 .30	1.2	0.038	15	1183337.74	6.6	0.203
15	16	241857.11	1.3	0.041	16	$120 \quad 945.55$	6.7	
16	17	25.334 .92	-1.4	0.044	17	1214553.36	-6.8-6.96.97.0	$\begin{aligned} & 0.206 \\ & 0.211 \\ & 0.214 \\ & 0.216 \end{aligned}$
17	18	271412.72	1.5	0.047	18	123221.16		
18	19	285020.53	1.6	0.049	19	124588.97		
19	20	302698.34	1.7	0.052	20	1263416.78		
20	21	$39 \quad 236.15$	-1.81.92.02.0	0.055	91	1281024.59	-7.1	$\begin{aligned} & 0.219 \\ & 0.222 \end{aligned}$
21	212	3338438.95		0.057	29	1294632.39	7.27.3	
29	23	351451.76		0.0600.063		1312240.20		$\begin{aligned} & 0.222 \\ & 0.225 \end{aligned}$
23	24	365059.57			24	1325848.01	7.4	$0.2: 7$
24	25	$3827 \quad 7.38$	-2.1	0.066	25	1343455.81	-7.5	0.2300.233
25	26	$40 \begin{array}{llll}40 & 15.18\end{array}$	2.2	0.068	26	$13611 \quad 3.62$	7.67.7	
26	27	413922.99	2.3	0.071	27	1374711.43		0.233 0.236
27	23	431530.80	9.4	0.074	28	1392319.24	7.7	0.238
28	29	445138.60	-2.5	0.077	29	1405927.04	- 78	0.241
98 30	30	469746.41	2.6	0.079	30	1423534.85	7.9	0.244
30 31	Feb. ${ }^{31}$	$48 \quad 354.24$	2.7	0.082	31	1441149.66	8.0	0.246
31	Feb. 1	$4940 \quad 2.03$	2.8	0.085	Apr. 1	1454750.47	8.1	0.249
Feb. $\begin{array}{r}1 \\ 2 \\ 3 \\ 4 \\ \\ \\ 5 \\ 6 \\ 7 \\ 8\end{array}$	2345	$\begin{array}{lll} 51 & 16 & 9.83 \\ 52 & 52 & 17.64 \\ 54 & 23 & 25.45 \\ 56 & 4 & 33.26 \end{array}$	$\begin{array}{r} -2.8 \\ 2.9 \\ 3.0 \\ 3.1 \end{array}$	$\begin{aligned} & 0.088 \\ & 0.090 \\ & 0.093 \\ & 0.096 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{array}{lrr} 147 & 2.3 & 58.27 \\ 149 & 0 & 6.08 \\ 150 & 36 & 13.89 \\ 152 & 12 & 21.69 \end{array}$	-8.9	$\begin{aligned} & 0.2 .2 \\ & 0.2 .5 \\ & 0.2 .77 \\ & 0.260 \end{aligned}$
							8.3	
							8.4	
							8.5	
	6789	$\begin{array}{llll}57 & 40 & 41.06 \\ 59 & 16 & 48.87 \\ 60 & 52 & 56.68 \\ 69 & 29 & 4.49\end{array}$	$\begin{array}{r} -3.2 \\ 3.3 \\ 3.4 \\ 3.5 \end{array}$	$\begin{aligned} & 0.099 \\ & 0.101 \\ & 0.104 \\ & 0.107 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{array}{rrr} 153 & 48 & 29.50 \\ 155 & 24 & 37.31 \\ 157 & 0 & 45.12 \\ 158 & 36 & 52.92 \end{array}$	$\begin{array}{r} -8.5 \\ 8.6 \\ 8.7 \\ 8.8 \end{array}$	$\begin{aligned} & 0.263 \\ & 0.266 \\ & 0.268 \\ & 0277 \end{aligned}$
9	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{array}{ccc} 64 & 5 & 19.29 \\ 65 & 41 & 20.10 \\ 67 & 17 & 27.91 \\ 68 & 53 & 35.71 \end{array}$	$\begin{array}{r} -3.6 \\ 3.6 \\ 3.7 \\ 3.8 \end{array}$	$\begin{aligned} & 0.110 \\ & 0.112 \\ & 0.115 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{array}{rrr}160 & 13 & 0.73 \\ 161 & 49 & 8.54 \\ 163 & 2.5 & 16.35 \\ 16.5 & 1 & 24.15\end{array}$	-8.9	$\begin{aligned} & 0.274 \\ & 0.277 \\ & 0.278 \\ & 0.282 \end{aligned}$
10							9.0	
11							9.1	
12							9.2	
13	$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	$\begin{array}{llll}70 & 29 & 43.52 \\ 72 & 5 & 51.33 \\ 73 & 41 & 59.14 \\ 75 & 18 & 6.94\end{array}$	$\begin{array}{r} -3.9 \\ 4.0 \\ 4.1 \\ 4.9 \end{array}$	$\begin{aligned} & 0.120 \\ & 0.123 \\ & 0.126 \\ & 0.129 \end{aligned}$	14151617	1663731.96 1681339.77 169 49 171 15	-93	$\begin{aligned} & 0.28 .5 \\ & 0.283 \\ & 0.990 \\ & 0.293 \end{aligned}$
14							- 9.3	
15							9.4	
16							9.5	
17	18	765414.75	-4.3	0.131	18	$\begin{array}{llll}173 & 2 & 3.19\end{array}$	-9.6	0.296
18	19	753023.56	4.4	0.134	19	174.3811 .00	9.7	0.2938
19	2021	$\begin{array}{rrrr}80 & 6 & 30.37 \\ 81 & 42 & 38.17\end{array}$	4.54.5	$\begin{aligned} & 0.137 \\ & 0.140 \end{aligned}$	20	$\begin{array}{lll}176 & 14 & 18.80 \\ 177 & 50 & 26.61\end{array}$	0.9	
$\mathfrak{2 0}$					21			0.304
21	22	831845.98	-4.64.74.84.9	$\begin{aligned} & 0.142 \\ & 0.145 \\ & 0.148 \\ & 0.151 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \\ & 94 \\ & 25 \end{aligned}$	$\begin{array}{lrr}179 & 26 & 34.42 \\ 181 & 2 & 42.23 \\ 180 & 33 & 50.03 \\ 184 & 14 & 57.84\end{array}$	$\begin{array}{r} -10.0 \\ 10.1 \\ 10.1 \\ 10.2 \end{array}$	$\begin{aligned} & 0.307 \\ & 0.309 \\ & 0.312 \\ & 0.315 \end{aligned}$
22	23	845453.79						
93	24	8631.60						
24	25	$83 \% 9.40$						
25	26	894317.21	$\begin{array}{r} -5.0 \\ 5.1 \\ 5.2 \\ -5.3 \end{array}$	$\begin{aligned} & 0.153 \\ & 0.150 \\ & 0.159 \\ & 0.161 \end{aligned}$		185515.65	-10.3	0.318
96	97	011985.02			27	1879713.46	10.4	0.329
27	28	925.532 .82			25	189) 321.26	10.5	0.323
28	\%	943140.63			29	1903929.0 i	-10.6	0.326

Motion of Mean Longitude and of $-\Omega$; and Fraction of Year.

Motion of Mean Longitude and of $-\delta$; and Fraction of Year.

lear.	Motion of Mean Longitude.	Motion of $363^{\circ}-8$	Fruction of lear.	Year.	Motion of Mean Longitude	Motion of $360^{\circ}-\Omega$	$\begin{aligned} & \text { Praction of } \\ & \quad \text { Year. } \end{aligned}$
$\begin{array}{r} \text { Aug. } 23 \\ 29 \\ 30 \\ 31 \end{array}$		$\begin{array}{r} -21.1 \\ 21.5 \\ 21.5 \\ 21.6 \end{array}$	$\begin{aligned} & 0.657 \\ & 0.669 \\ & 0.669 \\ & 0.663 \\ & 0.665 \end{aligned}$	Nov. $\begin{array}{r}4 \\ 5 \\ 6 \\ 7 \\ 7\end{array}$	$\begin{array}{ll} 133^{\prime} & : 8 \\ 13 & 4.67 \\ 135 & 4 \\ 130.46 \\ 136 & 40 \\ 138 & 20.27 \\ 165.07 \end{array}$	$\begin{array}{r} -27.4 \\ -27.4 \\ 27.6 \\ 27.7 \end{array}$	$\begin{aligned} & 0.843 \\ & 0.8 .16 \\ & 0.849 \\ & 0.852 \end{aligned}$
Sept. $\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{cccc}30 & 5.5 & 44.08 \\ 32 & 31 \\ 34 & 81 & 5.79 \\ 3 & 0.60 \\ 35 & 44 & 8.41\end{array}$	$\begin{array}{r} -21.7 \\ 21.8 \\ 21.9 \\ 2.9 \\ 22.0 \end{array}$	$\begin{aligned} & 0.668 \\ & 0.671 \\ & 0.674 \\ & 0.676 \end{aligned}$	$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \end{array}$	1395235.88 $1412 \checkmark 43.69$ 143451.50 1444059.30	$\begin{array}{r} -97.8 \\ 27.9 \\ 28.0 \\ 28.0 \end{array}$	$\begin{aligned} & 0.854 \\ & 0.857 \\ & 0.860 \\ & 0.86 \% \end{aligned}$
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 37 \quad 9016.21 \\ & 3856.4 .02 \\ & 403231.83 \\ & 4.28 \\ & 4.29 .64 \end{aligned}$	$\begin{array}{r} -22.1 \\ -22.2 \\ 2.23 \\ 2.2 .3 \\ 2.3 \end{array}$	$\begin{aligned} & 0.679 \\ & 0.6 \times 2 \\ & 0.685 \\ & 0.687 \end{aligned}$	112 13 14 15	$14617 \quad 7.11$ 1475314.92 149 2.9 2e.7.3 $151 \quad 5 \quad 30.5$:	$\begin{array}{r} -28.1 \\ 28.2 \\ 28.3 \\ 28.4 \end{array}$	$\begin{aligned} & 0.865 \\ & 0.868 \\ & 0.871 \\ & 0.873 \end{aligned}$
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\begin{array}{lll} 43 & 44 & 47.44 \\ 45 & 20 & 5.42 \\ 46 & 57 & 3.26 \\ 48 & 33 & 10.87 \end{array}$	$\begin{array}{r} -9.4 \\ 20.5 \\ 29.6 \\ 22.7 \end{array}$	$\begin{aligned} & 0.690 \\ & 0.693 \\ & 0.695 \\ & 0.6!98 \end{aligned}$	16 17 18 19	$\begin{array}{llll} 152 & 41 & 3 \times .34 \\ 154 & 17 & 46.15 \\ 155 & 53 & 53.96 \\ 157 & 30 & 1.76 \end{array}$	$\begin{array}{r} -28.5 \\ 28.6 \\ 28.7 \\ 23.8 \end{array}$	$\begin{aligned} & 0.876 \\ & 0.879 \\ & 0.879 \\ & 0.854 \end{aligned}$
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{array}{lll}50 & 9 & 18.67 \\ 51 & 45 & 26.48 \\ 53 & 21 & 34.5 \% \\ 54 & 57 & 42.09\end{array}$	$\begin{array}{r} -22.8 \\ 23.9 \\ 23.0 \\ 23.0 \end{array}$	$\begin{aligned} & 0.701 \\ & 0.704 \\ & 0.7106 \\ & 0.709 \end{aligned}$	20 21 21 22 23	$159 \quad 6 \quad 9.57$ 1604217.38 1621825.18 1635432.99	$\begin{array}{r} 23.8 \\ 28.9 \\ 29.0 \\ 29.0 \\ 20.1 \end{array}$	$\begin{aligned} & 0.887 \\ & 0.890 \\ & 0.893 \\ & 0.895 \end{aligned}$
$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	563349.90 $58 \quad 9 \quad 57.71$ $5946 \quad 5.52$ 612213.32	$\begin{array}{r} -23.1 \\ 23.1 \\ 2: 1.1 \\ 23.4 \end{array}$	$\begin{aligned} & 0.712 \\ & 0.715 \\ & 0.717 \\ & 0.720 \end{aligned}$	24 24 20 26 27	$\begin{array}{lll} 165 & 30 & 40.80 \\ 167 & 6 & 48.61 \\ 168 & 42 & 56.41 \\ 170 & 19 & 4.22 \end{array}$	$\begin{array}{r} -29.2 \\ 29.3 \\ 29.4 \\ 29.5 \end{array}$	$\begin{aligned} & 0.898 \\ & 0.901 \\ & 0.904 \\ & 0.906 \end{aligned}$
$\begin{aligned} & 21 \\ & 20 \\ & 23 \\ & 23 \\ & 24 \end{aligned}$	$6258 \quad 21.13$ 643428.94 661036.75 674644.55	-23.5 -23.6 23.7 23.8	$\begin{aligned} & 0.723 \\ & 0.726 \\ & 0.728 \\ & 0.731 \end{aligned}$		171551203 1733119.84 $175 \quad 767.64$ 1764335.45	$\begin{array}{r} -29.6 \\ -29.6 \\ 29.7 \\ 29.8 \end{array}$	$\begin{aligned} & 0.999 \\ & 0.912 \\ & 0.914 \\ & 0.917 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 27 \end{aligned}$	69 22 52.36 70 70 59 0.17 72 35 $7 . .98$ 74 11 15.78	$\begin{array}{r} -23.9 \\ 23.9 \\ 24.0 \\ 24.1 \end{array}$	$\begin{aligned} & 0.734 \\ & 0.737 \\ & 0.739 \\ & 0.742 \end{aligned}$	1 3 4 4 5	1781943.26 1795551.07 1 181 3158.87 $183 \quad 8 \quad 6.68$	$\begin{array}{r} -29.9 \\ 30.0 \\ 30.1 \\ 30.2 \end{array}$	$\begin{aligned} & 0.920 \\ & 0.923 \\ & 0.925 \\ & 0.925 \end{aligned}$
	$\begin{aligned} & 7547 \quad 43.59 \\ & 772331.40 \\ & 785939.20 \\ & 80 \quad 3547.01 \end{aligned}$	$\begin{array}{r} -94.2 \\ 24.3 \\ 24.4 \\ 24.5 \\ 24.5 \end{array}$	$\begin{aligned} & 0.745 \\ & 0.747 \\ & 0.750 \\ & 0.753 \end{aligned}$	6 7 8 8 9	1844414.49 1862029.29 1875630.10 $18!3237.91$	$\begin{array}{r} -30.3 \\ 30.4 \\ 30.4 \\ 30.5 \end{array}$	$\begin{aligned} & 0.931 \\ & 0.934 \\ & 0.936 \\ & 0.939 \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	821154.82 83482.63 8.52410 .43 87 018.24	$\begin{array}{r} -94.6 \\ 24.7 \\ 24.7 \\ 24.8 \end{array}$	$\begin{aligned} & 0.756 \\ & 0.758 \\ & 0.761 \\ & 0.764 \end{aligned}$	10 11 12 13	$\begin{array}{lr} 191 & 845.72 \\ 192 & 44 \\ 193.52 \\ 194 & 21 \\ 195 & 1.33 \\ 1.14 \end{array}$	$\begin{array}{r} -30.6 \\ 30.7 \\ 30.8 \\ 30.9 \end{array}$	$\begin{aligned} & 0.942 \\ & 0.945 \\ & 0.947 \\ & 0.950 \end{aligned}$
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	883626.05 901233.86 914841.66 1132449.47	$\begin{array}{r} -24.9 \\ -25.0 \\ 25.1 \\ 25.1 \\ 25.2 \end{array}$	$\begin{aligned} & 0.767 \\ & 0.769 \\ & 0.772 \\ & 0.775 \end{aligned}$	14 15 16 17	$\begin{array}{lll} 197 & 3 & 16.95 \\ 190 & 9 & 2.475 \\ 000 & 4.5 & 32.56 \\ 202 & 21 & 40.33 \end{array}$	$\begin{array}{r} -31.0 \\ 31.1 \\ 31.2 \\ 31.2 \end{array}$	$\begin{aligned} & 0.953 \\ & 0.956 \\ & 0.958 \\ & 0.961 \end{aligned}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$95 \quad 0 \quad 57 .!8$ $\begin{array}{lll}96 & 37 & 5.08\end{array}$ $98 \quad 1312.89$ 954920.70	$\begin{array}{r} -25.3 \\ -25.4 \\ 25.5 \\ 25.6 \end{array}$	$\begin{aligned} & 0.778 \\ & 0.780 \\ & 0.783 \\ & 0.786 \end{aligned}$	18 18 19 20 21	2035748.17 2053355.98 $207 \quad 10 \quad 3.79$ 2084611.60	$\begin{array}{r} -31.3 \\ 31.4 \\ 31.5 \\ 31.6 \end{array}$	$\begin{aligned} & 0.964 \\ & 0.967 \\ & 0.969 \\ & 0.972 \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	1012528.51 $103 \quad 136: 31$ 1043744.12 1061351.93	$\begin{array}{r} -95.6 \\ -2.7 \\ 25.8 \\ 25.8 \\ 25.9 \end{array}$	$\begin{aligned} & 0.789 \\ & 0.791 \\ & 0.794 \\ & 0.797 \end{aligned}$	29 23 23 24 25	2102219.40 2115897.21 2133435.04 2151042.83	$\begin{array}{r} -31.7 \\ 31.7 \\ 31.5 \\ 32.0 \end{array}$	$\begin{aligned} & 0.975 \\ & 0.977 \\ & 0.980 \\ & 0.183 \end{aligned}$
$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$	1074959.74 $10926 \quad 7.54$ 111215.35 1123823.16	$\begin{array}{r} -26.0 \\ 26.1 \\ 26.2 \\ 26.3 \\ \hline \end{array}$	$\begin{aligned} & 0.800 \\ & 0.802 \\ & 0805 \\ & 0.808 \end{aligned}$	26 28 28 28 20	2164650.63 218 ! 58.44 $\begin{array}{lll}219 & 59 & 6.25 \\ 221 & 35 & 14.06\end{array}$	$\begin{array}{r} -32.0 \\ -32.1 \\ 32.2 \\ 32.3 \end{array}$	$\begin{aligned} & 0.986 \\ & 0.1188 \\ & 0.991 \\ & 0.994 \end{aligned}$
$\begin{aligned} & 23 \\ & 24 \\ & 24 \\ & 20 \\ & 26 \end{aligned}$	1141430.97 1155038.77 1172646.58 119254.39	$\begin{array}{r} -26.4 \\ -26.4 \\ 26.5 \\ 26.6 \end{array}$	$\begin{aligned} & 0.810 \\ & 0.813 \\ & 0.816 \\ & 0.819 \end{aligned}$	30 31 32 33	2231121.86 2244720.67 2262337.48 2275945.28	$\begin{array}{r} -32.4 \\ 32.5 \\ 32.6 \\ 32.7 \end{array}$	$\begin{aligned} & 0.997 \\ & 0.999 \\ & 1.009 \\ & 1.005 \end{aligned}$
$\begin{aligned} & 127 \\ & 28 \\ & 239 \\ & 30 \end{aligned}$	$\begin{array}{lll} 120 & 39 & 2.19 \\ 1929 & 15 & 10.00 \\ 123 & 51 & 178 \\ 145 & 27 & 25.62 \end{array}$	$\begin{array}{r} -26.7 \\ -26.8 \\ 26.9 \\ 27.0 \end{array}$	$\begin{aligned} & 0.821 \\ & 0.824 \\ & 0.827 \\ & 0.830 \\ & 0.830 \end{aligned}$	$\begin{aligned} & 34 \\ & 39 \\ & 36 \\ & 34 \end{aligned}$		$\begin{array}{r} -32.8 \\ 32.8 \\ 32.9 \\ -33.0 \end{array}$	$\begin{aligned} & 1.008 \\ & 1.010 \\ & 1.013 \\ & 1.016 \end{aligned}$
Nov.	$\begin{array}{ll} 127 & 3 \\ 123.42 \\ 12 y & 39 \\ 1: 10 & 41.23 \\ 130 & 49.04 \\ 131 & 51 \\ \hline \end{array}$	$\begin{array}{r} -27.1 \\ 27.1 \\ 27.2 \\ -27.3 \end{array}$	$\begin{aligned} & 0.832 \\ & 0.83 .3 \\ & 0.8: 38 \\ & 0.841 \\ & \hline \end{aligned}$				

Motion of Mean Longitude.								
Hours.	For Hours.		Minutes or Seconds.	For Minutes.	For Seconds.	Minutes or Seconds.	For Minutes.	For Seconds.
1	$\begin{array}{llll}0 & 4 & 4 \\ 0\end{array}$		1	$\begin{array}{ll}0 & \prime \prime \\ 0 & 4.005\end{array}$	${ }^{\prime \prime} 0.067$	31	${ }_{2}{ }^{\prime} \quad 4.168$	2.069
2			2	$0 \quad 8.011$	0.134	32	$\begin{array}{lll}2 & 8.173\end{array}$	2.136
3	$\begin{array}{rrrr}0 & 8 & 0.651 \\ 0 & 12 & 0.976\end{array}$		3	012.016	0.200	33	212.179	2.203
4	0161.301		4	$0 \quad 16.022$	0.267	34	216.184	2.270
5			5	020.027	0.334	35	220.190	2.336
6	$\begin{array}{llll}0 & 20 & 1.627 \\ 0 & 24 & 1.952 \\ 0 & 2 & 2.27\end{array}$		6	024.033	0.401	36	224.195	2.403
7	$\begin{array}{llll}0 & 24 & 1.952 \\ 0 & 28 & 2.277\end{array}$		7	028.038	0.467	37	228.201	2.470
8	$\begin{array}{llll}0 & 28 \\ 0 & 32.277 \\ 0 & 2.602\end{array}$		8	032.043	0.534	38	232.206	2.537
9	00 322.602		9	036.049	0.601	39	236.211	2.604
10	00 03.253		10	040.054	0.668	40	240.217	2.670
11	$0 \begin{aligned} & 0 \\ & 0\end{aligned} 43.578$		11	044.060	0.734	41	244.222	2.737
12	$\begin{array}{llll}0 & 44 & 3.578 \\ 0 & 48 & 3.904 \\ 0 & 5 & 4 .\end{array}$		12	048.065	0.801	42	248.228	2.804
13	0524.229		13	052.070	0.868	43	252.233	2.871
14	0564.554		14	056.076	0.935	44	256.239	2.937
15	104.880		15	10.081	1.001	45	30.244	3.004
16	145.205		16	14.087	1.068	46	34.249	3.071
17	185.530		17	18.092	1.135	47	$\begin{array}{ll}3 & 8.255\end{array}$	3.138
18	1 1 1 125		18	112.098	1.202	48	312.260	3.204
19	$\begin{array}{ll}1 & 166.181\end{array}$		19	116.103	1.268	49	316.266	3.271
20	1206.506		20	120.108	1.335	50	320.271	3.338
21	1246.831		21	124.114	1.402	51	324.277	3.405
22	1287.157		22	128.119	1.469	52	328.282	3.471
23	1327.482		23	132.125	1.535	53	332.287	3.533
24	1367.807		24	136.130	1.602	54	336.293	3.605
			25	140.136	1.669	55	340.298	3.672
			26	144.141	1.736	56	344.304	3.738
			27	148.146	1.802	57	348.309	3.805
			28	152.152	1.869	58	352.314	3.872
			29	156.157	1.936	59	356.320	3.939
			30	20.163	2.003	60	$4 \quad 0.325$	4.005
Days.	Motion of M. L.			Days.	Motion of M. \mathbf{I}.		Days.	Motion of M. L.
0.1	[$\begin{array}{llll}0 & 9 & 9 & 36.781\end{array}$			0.01	0 57.678		0.001	5.768
0.2	[$\begin{aligned} & 01913.561 \\ & 0 \\ & 0\end{aligned}$			0.02	155.356		0.002	11.536
0.3 0.4	02850.342			0.04	253.034	350.712	0.003	17.303
0.5	0483.904	03827.123		0.05	448.390		0.005	28.839
0.6	$\begin{array}{rrrr}0 & 57 & 40.684 \\ 1 & 7 & 17.465\end{array}$			0.060.07	546.068		0.006	34.607
0.7				$\begin{array}{ll}6 & 43.746 \\ 7 & 41.425\end{array}$		0.007	40.375	
0.8	11654.246					0.08	0.008	46.142
0.9	12631.027			0.090.10	839.103		0.009	51.910
1.0			$6 \quad 7.807$		936.781		0.010	57.678

TABLC IX.

Factor of a small Correction to be multiplied by the fraction of the year and then added to L.

Year.	Factor.	Year.	Factor.	Year.	Factor.	Year.	Factor.
1750	-0.018	1800	-0.011	1850	$-0^{\prime \prime}$		1900
1760	0.016	1810	0.010	1860	0.003	1910	+0.007
1770	0.015	1820	0.009	1870	-0.001	1920	0.010
1780	0.014	1830	0.007	1880	+0.001	1930	0.013
1790	0.012	1840	0.006	1890	0.004	1940	0.020
1800	-0.011	1850	-0.005	1900	+0.007	1950	+0.023

EQUATION OF TILE CENTRE, FOR $\mathrm{m}=0$.
Constant added $47^{\prime} 3^{\prime \prime} .5$. Period $=294.7003$.

Arg. I.	${ }_{0}^{d}$	$\begin{gathered} \text { Diff. } \\ \text { for } 0.1 \end{gathered}$	$\stackrel{d}{\mathrm{~d}} .1$	$\begin{gathered} \text { Diff. } \\ \text { for } 0 \mathrm{~d} .1 \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0.2 \end{gathered}$	$\begin{gathered} \text { Viff. } \\ \text { for } 0^{d} .1 \end{gathered}$	${ }_{0}^{\mathrm{d}} .3$	$\left\|\begin{array}{c} \text { Diff. } \\ \text { for } 0 \mathrm{~d} .1 \end{array}\right\|$	$\begin{aligned} & d \\ & 0.4 \end{aligned}$	$\underset{\substack{\text { Diff. } \\ \text { for } 0 \mathrm{~d} .1}}{\text {. }}$
${ }_{0}^{\text {d }}$	O 4783.150	+7.96	4 ${ }^{1} 11.146$	+7.96	$47^{1} 19.42$	+7.93	$4{ }^{\frac{1}{4}}{ }^{2} 7^{\prime \prime} 138$	+7.96	47\% 3íl 35	+7.96
1	04823.11	7.96	4831.07	7.96	48 39.03	+7.96	4846.98	${ }^{7.96}$	48 54.94	7.05
2	049 42. (\%)	7.95	4950.60	7.95	4958.55	7.05	$50 \quad 6.50$	7.94	5014.44	7.94
3	0512.07	7.93	5110.00	7.93	5117.93	7.93	5125.86	7.33	51 33.79)	7.92
4	05221.30	7.01	52.29 .21	7.91	5237.11	7.91	5245.02	. 90	5953.92	. 20
5	05340.27	7.88	53848.15	7.88	5356.02	7.88	it 3.90	7.87	5411.7	7.87
i	0.5458 .92	7.85	5.518 .77	7.84	5514.61	7.84	55 2\%.4	7.84	55130.28	7.83
7	05617.19	7.81	5025.00	7.80	5632.70	7.80	5640.59	7.79	5648.38	7.is
8	05735.02	7.76	5742.78	7.75	5750.53	7.75	5758.27	7.74	$58 \quad 6.01$	7.74
9	$058 \cdot 5.234$	7.70	59	7.70	597.74	7.63	5915.43	7.69	59 23.11	7.68
10	100.09	7.64	016.74	7.64	024.37	7.63	033.00	7.63	039.69	7.69
11	1125.22	7.58	133.79	7.57	140.36	7.56	147.92	7.56	155.48	7.55
12	1240.65	7.51	248.15	7.50	255.65	7.49	$3 \quad 3.14$	7.48	310.62	7.48
13	$1 \begin{array}{llll}1 & 3 & 55.33\end{array}$	7.43	42.76	7.42	410.17	7.41	417.58	7.40	424.98	7.40
14	1500	7.31	516.54	7.34	523.88	7.33	531.20	7.32	538.51	7.31
15	1622.21	7.25	620.46	7.24	630.50	7.24	643.03	7.23	651.15	7.29
16	1784.28	7.16	741.44	7.15	748.58	\%. 14	75.5 .71	7.13	$8 \quad 2.8 .1$	7.12
17	1845.37	7.06	852.43	7.05	859.47	7.04	$9 \quad 6.50$	7.93	913.52	7.01
18	1 9) 55.4.2	6.95	$\begin{array}{ll}10 & 2.37\end{array}$	6.94	109.30	6.93	10 16:22	6.92	1023.14	6.91
19	1114.37	6.81	1111.20	6.83	1118.03	6.82	1124.83	6.80	1131.63	6.79
20	11212.17	6.72	1218.89	6.71	1225.59	6.70	1232.28	6.6	1238.96	6.67
21	11318.77	6.60	13 25.36	6.58	1331.94	6.5	1338.50	6.56	1345.06	6.55
22	11424.10	6.17	1430.57	6.46	1437.02	6.44	1443.45	6.43	1449.87	6.1
23	11528.13	6.34	1534.46	6.32	1540.78	6.31	1547.08	6.29	1553.36	6.98
24	11630.80	6.20	1636.99	6.19	1643.16	6.17	1649.32	6.16	1655.47	6.14
2.5	11733.05	6.05	1738.10	6.04	1744.13	6.02	1750.15	6.01	1756.15	6.00
26	11831.85	5.90	1837.75	5.89	1843.63	5.87	18 49,50	5.86	1855.35	5.84
27	11930.15	5.75	1935.89	5.74	1941.62	5.72	1947.33	5.71	1953.03	5.69
28	12026.89	5.59	2032.47	5.58	2033.05	5.56	2043.60	5.55	2049.14	5.53
29	12122.04	5.43	2127.46	5.42	2132.87	5.40	2138.26	5.38	2143.64	5.37
30	12215.55	5.27	2220.81	5.25	2226.05	5.23	2231.27	5.21	2236.48	5.20
31	1237.38	5.10	2312.47	5.08	2317.54	5.06	2322.59	5.05	23.27 .63	5.03
32	12357.49	4.92	242.40	4.90	247.30	4.89	2412.18	4.87	2417.04	4.85
33	12445.84	4.75	2450.58	4.73	2455.29	4.71	2.50 .00	4.63	254.68	4.67
34	12.539 .39	4.56	25364.95	4.35	2541.49	4.33	2546.00	4.51	2.550 .50	4.49
35	12617.12	4.38	2621.49	4.36	2625.84	4.34	2630.17	4.32	2634.49	4.30
36	12659.97	4.19	$\begin{array}{lll}27 & 4.15\end{array}$	4.17	$27 \quad 8.32$	4.15	2712.46	4.13	2716.59	4.11
37	12740.93	4.00	2744.92	3.98	2748.89	3.96	2752.84	3.94	2756.77	3.92
38	12819.96	3.80	28 23.75	3.78	28.27 .53	3.77	2831.28	3.75	28 35.02	3.73
31	12857.02	3.61	29 0.62	3.59	$29 \quad 4.20$	3.57	297.76	3.55	2911.29	3.53
40	12932.10	3.41	2935.50	3.39	2938.87	3.37	29.42 .23	3.35	29 45.57	3.33
41	$130 \quad 5.16$	3.20	$30 \quad 8.36$	3.18	3011.53	3.16	3014.69	3.14	3017.82	3.12
42	13036.19	3.00	3039.18	2.98	3048.14	2.96	3045.09	2.94	3048.02	2.32
43	1315.15	2.79	317.93	2.77	3110.69	2.75	3113.43	2.73	3116.15	2.71
44	13132.02	2.58	3131.59	2.56	3137.15	2.54	3139.68	2.52	31 42.18	2.50
4.5	13156.80	2.377	3159.16	2.35	321.50	2.33	323.81	2.31	3.26 .11	2.22
46	13219.45	2.16	32.21 .59	9.14	32 23.72	2.12	32 25.83	2.03	3.2 27.91	2.07
47	13239.96	1.91	3.41 .89	1.92	3243.80	1.90	3245.69	1.67	3947.56	1.85
48	13258.32	1.73	3830.04	1.71	331.73	1.68	$33 \quad 3.40$	1.66	$33 \quad 5.015$	1.64
49	133314.51	1.51	3:3 16.01	1.49	3317.49	1.47	3318.95	1.44	$33320: 38$	1.42
50	133328.53	1.29	:333 29.81	1.97	3331.07	1.25	33.39 .30	1.23	333 33.5.	1.20
51	133440.36	1.08	3341.42	1.05	3342.46	1.03	3343.48	1.01	3344.47 .	0.93
52	13345999	0.85	3350.83	0.83	3351.95	0.81	33.59 .45	0.79	33 53.23	0.76
53	133357.43	0.63	33.58 .05	0.61	3:3 58.6.3	0.59	3359.23	,	33359.78	0.54
51	1342.66	0. 41	$31 \quad 3.06$	0.30	313.41	0.37	$34 \quad 3380$	0.35	$34^{2} 4.13$	0.32
55	1345.18	+0.19	$31 \quad 5.86$	+0.17	$31 \quad 6.02$	+0.15	316	+0.13	346.27	+0.10

EQUATION OF THE CENTRE, FOR $\mathrm{m}=0$.
Constant added 4r'3 $3^{\prime \prime} 5 . \quad$ Period $=224 . \% 008$.

8 V

EQUATION OF THE CENTRE, FOR RE $=0$.
Constant added $47^{\prime} 3 \prime \prime .5$. Period $=29.4 .7008$.

Arg. 1.	$\frac{d}{0.0}$	$\begin{gathered} \text { Diff. } \\ \text { for } 00^{d}, 1 \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0.1 \end{gathered}$	$\begin{gathered} \text { Diff. } \\ \text { for } 8.1 \end{gathered}$	0.2	$\begin{gathered} \text { Wiff. } \\ \text { for } 0^{d} .1 \end{gathered}$	$\frac{d}{0.3}$	$\left\lvert\, \begin{gathered} \text { Diff: } \\ \text { for } 0 \mathrm{~d} .1 \end{gathered}\right.$	$\frac{d}{0.4}$	$\begin{gathered} \text { Dill: } \\ \text { for } 04.1 \end{gathered}$
56	i 311 ¢1. 19	${ }_{-0.03}$	310.15	-0.05	318	-0.07	$3{ }^{3} \quad 60.31$	-0.09	34 6.20	-0.12
57	$1: 315.10$	0.25	$34 \quad 4.84$	0.37	314.50	0.29	34 4.25,	0.32	$34 \quad 3.93$,
53	$1: 311.50$	0.47	3.1 .02	0.19	31.0 .5	0.51	33359.99	0.54	:333 59.45	0.56
59	$1: 3355.71$	0.63	3355.01	0.71	3354.28	0.73	3353.54	0.75	3352.77	0.78
(i0)	133347.72	0.91	33346.80	0.93	3345.86	0.95	3344.89	0.97	3343.91	1.00
(i1	133337.51	1.13	33.36 .10	1.15	33335.24	1.17	33334.06	1.19	333 32.86	1.21
69	1 1:3 2.5 .19	1.34	33323.383	1.37	: 23 22.4.	1.39	3321.06	1.41	33 19.64	1.43
63	$1: 3310.67$	1.56	339.10	1.58	$33 \quad 7.51$	1.60	$33 \quad 5.89$	1.62	$33 \quad 4.20$	1.65
61	132 54.00	1.77	3252.21	1.80	3250.41	1.82	3248.58	1.84	3246.73	1.86
6.5	13.3 3.3.19	1.98	3.33 .19	2.01	3231.17	2.03	32 29.13	2.05	3927.07	2.07
$6{ }^{6}$	$\begin{array}{llll}1 & 3 & 1.14 .96 \\ 1 & 1 & 51.2\end{array}$	2.20	3312.05	2.22	3398.89	2.24	327.57	2.26	32 5.29	2.28
67	13151.2	2.11	3148.80	2.43	3140.37	2.4	3143.91	2.47	3141.42	2.49
68	13126.10	2.62	3123.48	2.64	3120.83	2.66	3118.16	2.68	3115.47	$2 . \%$
69	13058.92	2.63	3056.09	2.84	30 5:3.23	2.86	30 50.36	2.88	3047.47	2.90
70	13029.69	3.02	3026.66	3.04	3023.60	3.06	3020.53	3.08	3017.43	3.10
71	1 123 58.45	3.22	2155.21	3.24	2951.96	3.26	2948.68	3.28	2345.39	3.30
72	1 29) 2.5 .21	3.42	2921.78	3.44	2918.33	3.46	2914.86	3.48	2.911 .37	3.50
73	128.00 .01	3.62	2846.38	3.64	28 42.74	3.66	2839.07	3.68	2835.39	3.69
74	12819.88	3.81	28 9.0.5	3.83	28.5 .22	3,85	281.36	3.87	2757.48	3.89
75	12833.36	4.00	2729.82	4.02	27 25.7!	4.04	2721.75	4.05	2717.68	4.07
76	12659.91	4.18	2648.71	4.20	2644.50	4.22	2640.27	4.24	2635.02	4.26
77	12610.14	4.37	26.5 .77	4.38	261.37	4.40	25 56.96	4.42	25.52 .53	5.44
78	12.523 .57	4.55	2521.02	4.56	2.516 .44	4.58	2511.85	4.60	2.57 .24	4.62
79	12439.23	4.72	2431.50	4.74	24 20.\%	4.76	2424.18	4.97	2420.20	4.79
80	12351.14	4.89	2346.24	4.91	2341.32	4.93	2336.39	4.94	2331.43	4.96
81	1231.35	5.06	22 56.29	5.08	2251.21	5.09	2246.10	5.11	2240.98	5.13
$8:$	1229.92	5.23	22 4.63	5.24	2159.44	5.56	2154.17	5.27	2148.89	5.29
83	12116.86	5.39	2111.47	5.40	21.6 .06	5.42	210.63	5.43	2055.19	5.45
81	12022.23	5.54	$20 \cdot 16.68$	5.56	2011.12	5.57	$\begin{array}{ll}20 & 5.54\end{array}$	5.59	1950.94	5.60
85	119 26.06	5.69	1920.36	5.71	1914.64	5.72	198.91	5.74	19. 3.17	5.75
86	11828.39	5.84	1822.55	5.85	1816.69	5.87	1810.81	5.88	184.92	5.90
87	11723.29	5.98	1723.30	5.99	1717.30	6.01	1711.28	6.02	$17 \quad 5.25$	6.0
88	11628.78	6.12	1622.65	6.13	1616.51	6.15	1610.36	6.16	164.19	6.18
89	11526.92	6.25	1520.66	6.26	1514.39	6.28	158.10	6.29	15.1 .81	6.30
90	11423.75	6.38	14 17.37	6.39	1410.97	6.40	$14 \quad 4.56$	6.42	1358.13	6.43
91	11319.33	6.50	1312.82	6.51	136.30	6.53	1259.77	6.54	1253.22	6.545
92	11213.70	6.63	127.08	6.63	120.44	6.64	1153.79	6.66	1147.13	6.67
93	1116.92	6.73	11.0 .18	6.75	1053.43	6.76	1046.67	6.77	1039.89	6.78
94	1959.03	6.84	952.19	6.85	945.33	6.86	938.46	6.87	931.58	6.88
95	1850.09	6.94	843.14	6.95	836.18	6.96	829.22	6.97	822.24	6.98
96	1740.16	7.04	733.11	7.05	726.05	7.06	718.09	7.07	7.11 .91	7.08
97	1629.27	7.13	622.14	7.14	614.99	7.15	67.83	7.16	60.67	7.17
98	1517.50	7.22	510.28	7.23	$5 \quad 3.05$	7.24	455.80	7.24	448.56	7.25
99	$\begin{array}{llll}1 & 4 & 4.89\end{array}$	7.30	357.59	7.31	350.28	7.32	342.96	7.32	335.63	7.33
100	1251.51	7.38	244.13	7.38	236.74	7.39	220.35	7.40	221.94	7.40
101	$1 \begin{array}{llll}1 & 1 & 37.39\end{array}$	7.45	129.95	7.45	122.49	7.46	115.03	\%.46	17.56	7.47
102	06022.62	7.51	60 15. 11	7.51	607.59	7.52	$\mathrm{c}_{5} 0.06$	7.53	5952.53	7.53
103	0597.23	7.57	5859.66	7.57	5852.08	7.58	5844.50	7.58	5836.91	7.59
104	05751.29	7.62	5743.67	7.62	57.36 .04	7.63	5728.41	7.63	5720.77	7.64
105	05634.86	7.67	5627.19	7.67	5619.52	7.67	5611.84	7.68	$56 \quad 4.16$	7.68
106	$\begin{array}{lll}0 & 5.517 .99\end{array}$	7.71	5510.28	7.71	55.2 .56	7.71	5454.85	7.82	5147.13	7.72
107	$054 \quad 0.74$	7.,44	5353.00	7.74	5345.25	7.75	5337.50	7.85	5329.75	7.75
108	05243.18.	7.77	5235.40	7.97	52.27 .63	7.77	5219.85	7.78	5212.07	7.7
109	05125.35	7.79	5117.56	7.79	51.9 .76	7.80	51.96	7.80	5054.16	7.80
110	0507.33	7.81	4953.52	. 81	4951.71	7.81	4943.89	\%.81	4936.08	7.82
111	04849.17	-7.82	4841.34	-i.82	4833.52	-7.82	4825.70	-7.82	4817.87	-7.82

RQUATION OF THE CENTRE，FOR $\mathrm{m}=0$ ．

Arg． 1	0.5	$\left\|\begin{array}{c} 1 \text { itli: } \\ \text { far } 0 \text { d } \end{array}\right\|$	${ }^{11} .6$		0.7	Dill： for $\mathrm{int}_{\mathrm{t}} 1$	0.8	$\left\lvert\, \begin{gathered} \text { Mifl: } \\ \text { for }()^{2}, i \end{gathered}\right.$	0.0	$\begin{gathered} \text { Bitl: } \\ \text { for (0d. } \end{gathered}$
Sid	1 ：11 6́． 0 \％	－0．11	31 \％\％in	－0．16	3．6 5．5．5	${ }_{-0.1 \times}$	315	－0．21	：14 5．1．31	${ }_{-0.23}^{11}$
57	13113.5 \％	0.36	3.43 .21	0.38	il 2.81	0.40	3112.10	0.43	341.16	$0 . \%$
58	$1: 51588.58$	0.58	：31 5x．ent	0.60	： 3 37．18	0.62	33 57.04	0．c5	：33 54， 518	0.67
59	$1: 35$ 51．．！${ }^{1}$	0.50	23351.18	0.82	3：3 50.31	0.81	2514！．49	0.10	3：3 48．6il	0.88
16	12314390	1．02	233 11.87	1.01	：3 40.8 ？	1.06	$3: 13007$	1.08	：4］ 38.6	1.10
（i）	$1: 33$ 31．13	1.21	：33 310.13	1.96	：33 20．1．13	1.28	i31 27.58	1.50	：3） 210.5	1.33
1：3	$1: 3118.20$	1.15	3：1111．78	1.17	：5315．95	1.49	23）1：1．74	1．ris	：33 13， 23	1.54
131	$13: 32.60$	1.67	33 0．5）	1.69	3259．22	1.71	32.57 .50	1.63	3：2 55.76	1．\％5
6	1 53 44．2：	1.88	129 4． 4.17	1.90	3241.05	1.92	13 3！ 319	1.91	3：3 37.17	1.97
（i）	$1: 5221.519$	2.09	32）20． 88	2.11	35 $20 . ⿱ 亠 乂 口$	2.14	［12 18．6il	4.16	［52 16.45	2.18
（i）	$1: 138.00$	2.30	32.30 .6	2.39	：11 58．0\％	2.35	：11 51i．00	2.17	：31 5is．tie	2.15
bĩ	$13138 . .12$	2.51	3136.40	2.53	$313: 3.86$	2.35	：11 31．26）	2.57	：31 21． 11	2.59
628	13119.77	2.62	31110.04	2.74	31789	2.76	3114.59	2.78	311.73	2.80
6：	13044.56	2.92	30.41 .121	2.94	：30 28． 67	2.96	：10 3．5． 0	2.98	$30.3 \cdot 2.71$	3.00
70	$13014.3:$	3.12	30 11．19	3.14	$30 \quad 80.03$	3.16	$30 \quad 4.86$	3.18	i0 l． 36	3.30
71	12944.08	3.32	20138.74	3.31	2935.39	3.36	2．） 32.02	3.38	ge） 28.63	3.10
72	120786	352	29） 4.33	3.54	290.78	3.56	28.57 .21	3.58	28 5．3．62	3.60
73	12831.68	3.71	9827.16	3.73	28.21 .29	3．75	28.20 .46	3.77	2816.68	3.59
71	197853.59	3.90	27 49， 67	8.92	2745.7 .4	3.94	$27+1.7!$	3.96	27.37 .82	3.98
75	12713.60	4.03	$27 \quad 9.50$	4.11	$27 \quad 5.33$	4.13	$27 \quad 1.24$	4.15	31） 57.08	4.17
76	12031.75	4.28	$21 ; 27.47$	4.29	26.23 .16	4.31	2618.84	4.33	2614.50	4.35
78	1 25 48．08	4.46	2．7 4：3．62	4.47	25.39 .13	4.19	2.53 .1 .6	4.51	2.730 .11	4 4 －13
78		4.63	2.157 .18	4.65	24533.31	4.67	2148.16	4.69	24.43 .94	4.70
$7: 1$	12415.40	4.81	2410.58	4.83	245.75	4.84	$24 \quad 0.30$	4．66	2356.03	4.88
80	12326.46	4.98	2321.48	4.93	2316.47	5.61	2311.45	5.03	$23 \quad 6.42$	5.04
81	$122: 35.85$	5.14	23：30．70	5.16	2925.53	5.18	22.20 .34	5.19	21 15．14	5.21
R2	121483.55	5.31	2138.28	5.32	2132.95	5.34	2127.60	5.35	2123.21	5.37
¢3	12049.5	5.47	20.44 .27	5.48	2038.78	5.50	2033.28	5.51	2027.76	5.53
81	119 ：4．333	5.61	1948.71	5.63	1943.07	5.64	1937.41	5.66	1931.74	5.687
85	118.77 .41	5.77	18.51 .63	5.78	1845.85	5.80	1840.04	5.81	18.31 .23	5.82
86	11759.09	5.91	17.53 .10	5.93	1747.17	5.91	1741.22	5.95	17 3．5． 46	5.97
87	11659.20	6.05	1653.15	6.06	1647.07	6.08	16 40．95）	6.09	1 （ 31.6 ）	6.10
88	11558.01	6.19	1．5） 51.82	6.20	154.5 .62	6.21	15139．40	6.23	$15.34 \% 16$	6.24
$8!$	114585.50	6.32	1449.17	6.33	14.42 .84	6.34	$14: 36.49$	6.35	1430.13	6.37
90	$11: 3: 11.70$	6.44	1345.25	6.45	1338.79	6.16	$133: 3.3 .31$	6.48	1：3 25.23	6.49
91.	11246.65	6.56	1240.10	6.57	1233.52	6.59	1220.92	6.60	1220.3 ？	8.61
92	11140.45	6.68	1133.77	6.69	1127.07	6.70	1120.37	6.71	11 13．05	6.72
913	$110: 333.11$	6.79	10 26．32	6.80	1019.51	6.82	1012.70	6.83	$10 \quad 5.87$	6.84
9.	1924.6%	6.80	917.79	6.90	！ 10.88	6.91	$9 \quad 33.97$	6.92	857.04	0.93
95	1815.25	6.99	$8 \quad 8.25$	7.60	$8 \quad 1.24$	7.01	754.22	7.02	747.19	7.03
96	174.83	7.09	657.7 .1	7.10	6.50 .64	7.11	${ }^{6} 483.52$	7.12	636.40	7.12
97	1 1 5 53．50	7.18	5 16．31	7.19	539.19	7.13	531.93	7.20	524.72	7.21
$!8$	14 ＋1．30	7.26	431.03	7.27	4 26．76	7.28	419.48	7.99	412.19	
！）	1328.30	\％ 3.34	320.95	7.35	313.60	7.35	36.24	7.36	258.88	7．3\％
100	1214.51	7.41	$\begin{array}{ll}2 & 7.12\end{array}$	7.12	159.70	7.42	15.5 .97	7.43	144.84	7.44
101	$\begin{array}{lll}1 & 1 & 0.09 \\ 0 & 50 & 4100\end{array}$	7.48	052.60	7.48	045.12	7.43	0 37.62	7.50	030．19	7.50
109	059941.99	754	5937.45	7.54	59.50 .91	7 T 5	59.92 .35	756	5914.79	7.36
103	05829.32	785	5821.73	7.60	5814.12	7.60	$58 \quad 6.52$	7.61	5758.91	7.61
104	05713.13	7.64	$57 \quad 5.49$	7.65	5057.83	7.65	5650.18	7.66	5642.52	7.66
10.5	0 5．5 50.6 .47	7.69	5．5） 48.78	7.69	5.541 .09	7.69	5.3 3：3．3！	7.70	5.520 .69	7.70
10%	0 5 5139.41	7.72	5131.68	7.73	5.123 .95	7.73	5416.22	7.73	5488.18	－ 7.74
107	05321.45	7.6	5314.23	7.76	$53 \quad 6.47$	7.78	5258.71	－7．78	5250.94	7.77
108	0524.29	7.88	5150.51	7.88	5148.72	7.79	it 40.93	7.79	5133.14	7.79
10，	05046.36	7.80	$50: 38.56$	7．80	50.30 .75	7.81	5022.95	7.81	5015.14	7.81
110	$04!28.21 \%$	7.28	4920.45	7.83	49 19． 6.3	7．82	494.81	7．08	48 53．9．9	7.82
111	$048 \quad 10.05$	-7.89	48 2．2：1	－i．82	475.4 .40	-7.83	4746.57	-7.83	4738.75	-7.83

EQUATION OF TIIE CENTRE, FOR $\mathbf{m}=\mathbf{0}$.
Constint added $48^{\prime} 3 / 3.5 . \quad$ Period $=20.1 .0008$.

Arg. 1.	0.0	$\begin{gathered} \text { Ditld: } \\ \text { for } 0^{\mathrm{d}} .1 \end{gathered}$	$\stackrel{11}{1}_{0.1}$	$\begin{gathered} \text { Bill. } \\ \text { for } 0 \mathrm{~d} .1 \end{gathered}$	${ }_{0.2}^{d}$	$\begin{aligned} & \text { Ditl: } \\ & \text { for } 0^{d} .1 \end{aligned}$	$\begin{gathered} d \\ 0.3 \end{gathered}$	$\begin{gathered} \text { Diff. } \\ \text { for } 0 \mathrm{~d} .1 \end{gathered}$	$\stackrel{\mathrm{d}}{0.4}$	$\begin{aligned} & \text { Diff: } \\ & \text { for } 0^{d} .1 \end{aligned}$
112	¢ 0478	$\stackrel{11}{\text {-7. } 83}$	47823.10	-718	$47^{\prime} 15.27$	-7183	$47 \quad 81.44$	${ }_{-11}^{1 / 83}$	$4\left(\mathrm{j} 50{ }^{\prime \prime} 62\right.$	-7.83
113	04619.66	7.82	46 4.83	7.82	45.57 .01	7.82	4549.19	7.82	4.541 .36	7.82
114	044 51.4:3	7.82	4446.61	7.82	$44: 33.80$	7.82	4430.98	7.81	4123.17	7.81
115	04336.31	7.81	4328.50	7.80	$4: 320.70$	7.80	4312.90	7.80	$43 \quad 5.10$	7.80
116	04218.34	7.79	4210.55	7.88	$42 \quad 2.77$	7.88	41.51 .09	7.78	4147.21	7.78
117	0410.59	7.76	40 \% 50.8	7.76	40 45.07	7.76	40.37 .31	7.75	4021.56	7.75
118	03943.11	7.73	3935.38	7.73	34927.65	7.12	39) 19.95	7.5	3912.21	7.72
119	03825.97	7.69	3818.28	7.69	3810.59	7.69	$38 \quad 2.90$	7.68	3755.22	7.68
120	0.37 ! 1.23	7.65	$37 \quad 1.58$	7.6.	30.53 .93	7.64	3046.29	7.64	3638.65	7.f13
121	$033.552 .0 \%$	7.60	3.745 .33	7.60	3.5137 .74	7.59	3530.14	7.59	35 2. 50	7.58
12:	033137.15	7.55	3429.61	7.54	3422.06	7.54	3414.53	7.53	34 7.00	7.53
123	03321.94	7.49	3314.46	7.48	3336.97	7.48	3259.50	7.47	3252.03	7.46
124	$032 \quad 7.36$	7.42	3159.94	7.42	31.52 .52	7.41	3145.12	7.40	3137.71	7.40
13.5	03053.46	7×35	3046.11	7.35	30 :38.77	7.34	30.31 .43	7.33	30.24 .11	7.32
126	0 O29 40.30	\%.28	29) 33.03	7.27	2925.76	7.96	2918.51	7.95	2911.26	7.24
127	02827.94	7.19	28.20 .75	7.19	$28 \quad 13.57$	7.18	$28 \quad 6.39$	7.17	2759.23	7.16
128	02716.43	7.11	$27 \quad 9.32$	7.10	$27 \quad 2.23$	7.09	2655.15	7.08	2648.07	7.07
129)	0265.82	7.01	2.588 .81	7.00	25.51 .81	6.99	2544.83	6.98	2537.85	6.97
130	02156.18	6.91	2449.27	6.90	2442.37	6.89	2435.48	6.88	2428.60	6.87
131	02347.55	6.81	2340.75	6.80	2333.95	6.79	2327.17	6.18	2320.39	6.77
132	02939.99	6.70	2933.29	6.69	2926.61	6.68	2219.94	6.67	2213.27	6.66
133	02133.55	6.59	2126.97	6.57	2120.40	6.56	2113.84	6.55	217.30	6.54
134	02028.28	6.47	2021.82	6.45	2015.37	6.44	$20 \quad 8.93$	6.43	$20 \quad 2.51$	6.42
135	01924.23	6.34	1917.89	6.33	1911.57	6.32	$19 \quad 5.26$	6.30	1858.96	6.29
136	01821.45	6.21	1815.24	6.20	$18 \quad 9.05$	6.19	$18 \quad 2.87$	6.17	1756.70	6.16
137	01719.99	6.08	1713.92	6.06	$17 \quad 7.86$	6.05	$17 \quad 1.82$	6.0 .1	16 55.79	6.02
138	01619,90	5.94	1613.96	5.92	1688.05	5.91	$16 \quad 2.14$	5.90	1550.25	5.88
139	01521.22	5.80	1515.43	5.78	$15 \quad 9.66$	5.77	$15 \quad 3.90$	5.75	1458.15	5.74
140	01424.00	5.65	1418.36	5.63	1412.73	5.62	$14 \quad 7.12$	5.61	$14 \quad 1.53$	5.59
141	01328.28	5.49	1:3 22.79	5.48	1317.32	5.46	1311.87	5.45	$13 \quad 6.43$	5.43
142	0 12 34.12	5.34	1228.79	5.32	1223.47	5.31	1218.17	5.99	1212.89	5.27
143	$\begin{array}{lllll}0 & 11 & 41.54\end{array}$	5.18	$11: 36.37$	5.17	1131.22	5.15	1126.08	5.13	11.20 .96	5.11
144	01050.59	5.01	1045.59	5.00	1040.60	4.98	10 3.).03	4.96	1030.68	4.94
145	$\begin{array}{llll}0 & 10 & 1.3\end{array}$	4.84	9) 56.48	4.83	951.66	4.81	946.86	4.79	942.08	4.77
146	0 0 013.75	4.67	$9 \quad 9.09$	4.65	94.45	4.63	859.82	4.62	855.21	4.60
147	$0 \quad 827.3$	4.43	823.45	4.47	818.98	4.46	814.54	4.41	810.11	4.42
148	$\begin{array}{lll}0 & 7 & 43.90\end{array}$	4.31	739.60	4.29	735.31	4.28	731.04	4.26	726.80	4.24
149	$\begin{array}{llll}0 & 7 & 1.69\end{array}$	4.13	657.57	- 4.11	6 5:3.47	4.69	649.38	4.07	645.32	4.05
150	0 0 $\quad 121,33$	3.94	617.39	3.92	613.48	3.90	6 9.59	3.89	$6 \quad 5.71$	3.87
151	$\begin{array}{llll}0 & 5 & 42.85\end{array}$	3.75	539.11	3.73	535.38	3.71	531.68	3.69	528.00	3.68
-152	$\begin{array}{llll}0 & 5 & 6.29\end{array}$	3.50	$5 \quad 2.74$	3,54	459.21	3,52	4 55.70	3.50	452.21	3.48
153	0431.68	3.36	428.32	3.34	424.99	3.32	421.68	3.30	418.38	3.28
154	$\begin{array}{llll}0 & 3 & 59.04\end{array}$	3.16	35.5 .88	3.14	352.75	3.13	349.63	3.10	346.54	3.08
155	$0 \quad 328.40$	2.96	325.44	2.94	322.51	2.92	319.60	2.90	316.70	2.88
156	$\begin{array}{lll}0 & 2 & 59.78\end{array}$	2.70	2 5\%.03	2.74	254.30	2.72.	251.59	2.70	248.90	2.68
157	$\begin{array}{llll}0 & 2 & 33.21\end{array}$	2.55	230.67	2.53	228.14	2.51	2 2.7.64	2.49	223.16	2.47
158	$\begin{array}{llll}0 & 2 & 8.71\end{array}$	2.35	26.38	2.32	24.06	2.30	21.77	2.28	159.50	2.26
159	$0 \quad 146.31$	2.13	144.18	2.11	142.08	2.09	140.00	2.07	137.94	2.05
160	$0 \quad 126.01$	1.92	124.10	1.90	122.21	1.88	120.34	1.86	118.49	1.84
161	$\begin{array}{lll}0 & 1 & 7.84\end{array}$	1.71	16.14	1.69	14.47	1.67	12.81	1.65	11.17	1.62
162	00051.81	1.49	050.33	1.47	048.87	1.45	047.43	1.43	0 46.01	1.41
163	$0 \quad 037.94$	1.28	036.68	1.26	035.43	1.23	034.21	1.21	033.00	1.19
164	$\begin{array}{lll}0 & 0 & 26.24\end{array}$	1.06	0 2.5. 19	1.04	021.16	1.02	023.16	1.00	022.17	0.97
16.5	0 0 0 16.72	0.84	015.89	0.82	0 15.08	0.80	0 14,29	0.78	0 113.5.3	0.76
166	$\begin{array}{llll}0 & 0 & 3.39\end{array}$	0.62	08.77	0.60	$\begin{array}{ll}0 & 8.18\end{array}$	0.58	0 7.61	0.56	$0 \quad 7.07$	0.54
167	$\begin{array}{lll}0 & 0 & 4.25\end{array}$	-0.40	$\begin{array}{lll}0 & 3.86\end{array}$	-0.38	$\begin{array}{lll}0 & 3.49\end{array}$	-0.36	$0 \quad 3.14$	-0.34	$0 \quad 2.81$	-0.32

EQUATION OF THE: CENTRE, FOR $\mathbf{m}=0$.

Arg. 1.	$0 . \pi$	$\left\|\begin{array}{c} \text { Difl: } \\ \text { for }(1) d i \end{array}\right\|$	${ }_{0.6}^{d i}$	$\begin{aligned} & \text { Ditl: } \\ & \text { (wor }()^{d} .1 \end{aligned}$	0.7	$\begin{gathered} \text { Ditl: } \\ \operatorname{Tor} 00^{d} .1 \end{gathered}$	${ }_{0}^{11}$	Diff: $\text { for }{ }^{1} .1$	0.9	$\left\lvert\, \begin{aligned} & \text { Uilf: } \\ & \text { fior } 0.1 \end{aligned}\right.$
112	© 110.51 .79	-7.03	46: $4: 3.96$	$\overbrace{-1.80}$	Ati $33^{\prime \prime} 14$	-7.83		${ }_{-7,83}^{1 / 8}$	41520.49	-11.83
11:1	04.5353 .54	7.82	4.5 35.72	7,*3	4.517 .90	7.52	4.5 10.07	7.82	4.52 .23	7.82
111	041 15.35	\%. 51	418.51	7.41	4:1 50, 273	7.51	di 13.71 .58	7.81	4 43 44.11	7.81
11.5	04252.10	7.80	4.2.19.50	7.75	d: 41.71	7.79		7.79	4282.13	7.79
116	04139.4 3	7.77	41 31.6it	7.77	41 2:3.89	7.\%\%	4116.12	2.77	$41 \quad 8.35$	7.86
117	04021.81	\%.\%5	40 11.0\%;	7.74	40 (i.:3)	7., 1	3.158 .15	7.i1	\% 3 \% 6.24	7.91
118	0:198 4.80	\%.71	33 3151.78	7.71	3849.08	7.71	13 11.37	\%.70	3.431 .67	7.70
119	03747.55	7.67	37 339.87	\%.67	3783.21	7.67	$37 \% 1.51$	7.66	37 14.स्य3	\%.\%
120	03631.02	7.6	33: 23.39	7.62	361.5.77	7.63	3i; 8.15	8.61	3i; 0.51	7.61
121	0 (1.5) 14.98	7.38	(3) 7.40	7.57	31.50 .80	7.57	3150.27	7.56	:31 48.71	isaj
$1 \because 2$	0 0333 59.47	\%22	23] 51.9%	7.51	:33 41.41	7.51	[53 315.914	\%..n)	:3:1 2: 3 ! 1	(30)
123	$0: 3241.57$	7.16	3: 37.11	7.4	32.20 .67	7.15	32 22.2	7.11	3214.75	7.13
124	03130.32	7.39	3120.94	7.38	3115.56	7.38	318.18	7.35	$31 \quad 0.8$?	7.36
12.5	03016.79	¢.32	30 ! 1.47	7.31	:30 2.17	7.30	24) 34.87	7.29	20) 47.58	7.28
129	0 029 4.03	7.24	2856.78	7.23	28.19 .56	7.22	28 42.31	7.2]	28 35. 11	7.20
127	0275207	7.15	2744.92	7.14	2737.79	7.13	2730.16	7.13	2723.51	7.12
123	02641.01	7.00	26333.95	7.05	26.26 .91	7.04	26 19.87	7.03	2 2 12.81	7.02
12,	02.530 .88	6.96	2.) 23.45	6.93	2.) 16.07	6.94	2.) 10.03	6.93	2.) 3.10	6.92
1:30	02421.73	6.86	2114.88	6.85	218.003	6.88	24 1.19)	0.83	2354.37	6.02
131	02313.63	6.76	236.83	6.75	2300.14	6.73	22.53 .41	6.72	2246	6.71
132	0926.62	6.64	2159.99	6.63	21.53 .36	6.62	21 46.74	0.61	2140.14	6.m9
1:33	0210.76	6.53	2051.24	6.51	2047.73	6.50	2041.24	6.49	20 :41.75	6.13
1:34	01956.10	6.10	19 4!.70	6.39	1943.31	6.38	19336.91	6.37	1!9:30.58	6.35
135	01852.68	6.28	1846.40	6.97	1840.14	6.25	1833.90	6.24	1827.17	6.23
136	01750.55	6.15	1744.41	6.13	1738.28	6.12	1732.17	0.11	1726.07	6.09
137	01649.78	6.01	1643.77	5.99	1637.78	5.98	1631.80	5.97	11685.81	5.93
1:38	0 1.5 50.38	5.57	1.) 41.5	5.85	1533.67	5.84	$15: 32.84$	5.82	15) 27.02	5.81
139	01452.42	5.72	1446.81	5.71	1441.01	5.69	1435.32	5.68	1429.65	5.66
140	01355.95	5.57	1350.38	5.56	1344.84	5.54	1339.30	5,33	1333.78	55^{10}
141	0131.00	5.42	1255.59	5.40	1250.20	5.38	1244.82	5.37	12 31.4i;	5.3
142	012 \%.th	5.26	12.2 .38	5.24	1157.14	5.23	11.51 .92	5.21	1146.72	5.19
143	01115.86	5.09	1110.77	5.08	$11 \quad 5.70$	5.06	110.65	3.04	10 5. 5.61	5.03
144	01025.74	4.93	1020.82	4.91	1015.92	4.89	1011.04	4.88	$10 \quad 6.17$	4.88
14.5	$0 \quad 937.32$	4.76	938.57	4.74	(1) 27.84	4.72	923.12	4.70	918.43	4.69
146	$0 \quad 850.62$	4.38	8 4(i.05	4.56	841.49	4.35	836.96	4.53	833.44	4.35
147	$\begin{array}{lllll}0 & 8 & 5.69\end{array}$	4.40	81.30	4.30	756.92	4.37	752.56	4.35	743.22	4.33
148	0 \% 22.56	4.22	718.35	4.20	\% 14.16	4.18	70.98	4.17	75.83	4.15
149	$\begin{array}{llll}0 & 6 & 41.27\end{array}$	4.01	6 37.25)	4.02	(i) 3:3.24	4.00	(6) 23.2 .5	93	625.28	2.36
1.50	$\begin{array}{llll}0 & 6 & 1.85\end{array}$	3.95	558.01	3.83	554.20	3.81	550.40	3.79	5 46,61	3.71
151	$\begin{array}{llll}0 & 5 & 24.33\end{array}$	3.66	520.68	3.64	517.06	3.62	513.45	3.60	59.86	3 m 5
159	$\begin{array}{llll}0 & 4 & 48.74\end{array}$	3.48	44.3 .29	3.41	441.85	3.42		3.40		3.35 3.18
103	0 O 415.11	3.26	411.85	3.21	48.82	3.22	4.5 .41	3.20 3.00	$4{ }^{4} 2.21$	3.18 2.98
155	$\begin{array}{llllll}0 & 3 & 13.83\end{array}$	2.88	310.98	2.84	38.15	2.82		2.80		
1.6	$0 \quad 246.21$	2.66	243.59	2.64	240.97	2.62	238.36	2.59	23.35 .78	2.57
158	0 2 20.70	2.45	218.26	2.43	215.81	2.41	2136.45	239	211.07	2.37
1.8	0 0 157.25	2.24	15.5 .02	2.22	1528	2.20	150.62	2.18	148.45	2.16
159	0 1 3 S.	2.03	133.88	2.01	131.88	1.93	129.90	1.97	127.95	1.94
160	0 1116.66	1.83	114.8 .5	1.80	113.07	1.77	111.30	1.75	19.56	1.73
161	$0 \quad 0 \quad 59.56$	1.60	057.97	1.58	055.40	1.56	054.85	1.51	053.32	1.52
162	0 0 0 44.61	1.39	0 4.3.23	1.37	041.88	1.34	040.51	1.22	0 3.9.23	1,30
163	$\begin{array}{llll}0 & 0 & 31.82\end{array}$	1.17	030.66	1.15	029.53	1.13	023.41	1.10	027.32	1.03
164	$\begin{array}{llll}0 & 0 & 21.21\end{array}$	0.95	020.97	0.93	0 19.3.5	0.91	018.45	$0 . .9$	017.57	0.26
1(\%)	$0 \begin{array}{lllll}0 & 0 & 19.78\end{array}$	0.33	0 12.06	7	011.36	09	0 10.ç	0.67	010.03	0.\%
166	0 0 0 6.51	0.51	$0 \quad 6.04$. 43	05.51	. 47	$0 \quad 5.10$	0.45	0 4.63	0.43
167	$\begin{array}{llll}0 & 0 & 2.51\end{array}$	-0.29	0 2.8.	-0.97	0 1.9\%	-0.25	$\begin{array}{lll}0 & 1.7 \%\end{array}$	-0.23	$0 \quad 1.51$	-0.91

EQUATION OF TUE CENTRE, FOR $\mathbf{m}=0$.
Constant added $47^{\prime} 33^{\prime \prime} .5$. Period $=924.7008$.

Arg. I	${ }^{d}$	$\left\lvert\, \begin{gathered} \mathrm{B}_{\mathrm{iff}} \\ \text { for }(0 \mathrm{~d} .1 \end{gathered}\right.$	${ }_{0}^{\mathrm{d}} .1$	$\left\|\begin{array}{c} \text { Diti: } \\ \text { for } 0 \text { d } .1 \end{array}\right\|$		$\left\lvert\, \begin{gathered} \text { Ditl: } \\ \text { for } 00^{d} .1 \end{gathered}\right.$	0.13	$\begin{gathered} \text { Diff. } \\ \text { for } \mathrm{Cd} .1 \end{gathered}$	$\begin{gathered} \mathrm{d} \\ 0.4 \end{gathered}$	$\begin{gathered} \text { Diff: } \\ \text { for } 0 \mathrm{~d} .1 \end{gathered}$
168	80	-0.18	$0 \quad 1.14$	-0.16	$0 \quad 0.99$	-0.14	$0 \begin{array}{ll}0 & 0.86\end{array}$	-0.12	$\begin{array}{ll}0 & 0.16\end{array}$	-0.10
169	$\begin{array}{llll}0 & 0 & 0.58\end{array}$	+0.04	0 0.63)	+0.06	$0 \quad 0.70$	+0.08	00.79	+0.10	$\begin{array}{lll}0 & 0.91\end{array}$	$+0.13$
170	0 0 0 O 2.06	0.26	$0 \quad 2.33$	0.28	$0 \quad 2.62$	0.30	0	0.32	$\begin{array}{ll}0 & 3.27\end{array}$	0.35
171	$\begin{array}{llll}0 & 0 & 5.74\end{array}$	0.48	0 (6.23	0.50	$0 \quad 6.75$	0.55	07.28	0.54	0 7.84	0.57
172	$\begin{array}{lllll}0 & 0 & 11.64\end{array}$	0.70	012.35	0.72	013.08	0.74	013.83	0.76	014.61	0.79
17\%	00019.73	0.92	020.66	0.94	021.61	0.96	022.59	0.98	023.58	1.0
174	$\begin{array}{llll}0 & 0 & 30.02\end{array}$	1.14	0 031.17	1.16	032.34	1.18	0 333.51	1.20	0 31.75	1.22
17.5	$\begin{array}{llll}0 & 0 & 42.51\end{array}$	1.36	043.88	1.38	045.27	1.40	046.68	1.42	048.11	1.44
176	057.18	1.58	058.76	1.60	1. 0.37	1.63	$0 \quad 2.00$	1.64	$\begin{array}{ll}0 & 3.65\end{array}$	1.66
177	0 0 1 14.03	1.79	115.82	1.81	117.65	1.44	119.50	1.66] 21.36	1.88
178	$\begin{array}{llll}0 & 1 & 33.03\end{array}$	2.01	1 135.04	2.03	137.08	2.05	139.15	2.07	141.23	2.99
179	$\begin{array}{llll}0 & 1 & 54.18\end{array}$	2.28	156.41	2,24	158.67	2.26	20.94	2.29	23.24	2.31
180	$0 \quad 217.47$. 43	219.91	2.46	229.38	2.48	224.87	2.50	227.38	2.53
181	$0 \quad 242.87$	2.65	2 45.53	2.67	248.20	2.69	250.90	2.71	253.62	2.73
182	$0 \quad 310.37$	2.8	313.24	2.87	316.12	2.90	3 19.03	2.92	321.96	2.94
183	$\begin{array}{llll}0 & 3 & 39.95\end{array}$	3.06	343.02	3.08	346.12	3.10	349.23	3.12	352.36	3.14
184	$\begin{array}{llll}0 & 4 & 11.59\end{array}$	3.27	414.87	3.29	418.16	3.31	421.48	3.33	424.82	3.35
185	44.26	3.47	448.74	3.49	452.23	3.51	455.75	3.53	4 5!.99	3.55
186	$\begin{array}{llll}0 & 5 & 20.93\end{array}$	3.67	524.61	3.69	528.31	3.71	532.04	3.73	533.76	3.75
187	558.59	3.86	62.46	3.88	$6 \quad 6.36$	3.90	610.27	3.92	614.20	3.94
188	$0 \quad 638.20$	4.06	642.26	4.08	646.35	4.10	650.46	4.11	654.58	4.13
189	07819.73	4.25	723.98	4.27	728.26	4.28	732.55	4.30	736.87	4.32
190	0883.14	4.43	$8 \quad 7.59$	4.45	813.05	4.47	816.53.	4.49	821.03	4.51
191	$\begin{array}{llll}0 & 8 & 48.42\end{array}$	4.62	853.05	4.6.1	857.69	4.65	92.36	4.67.	97.04	4.69
192	0 9 3	4.50	940.32	4.82	945.15	4.83	949.99	4.85	954.85	4.87
103	01024.40	4.98	1029.38	4.99	10 34.38	5.01	1033.40	5.03	1044.4 .1	5.04
$1: 4$	01115.02	5.13	1120.18	5.17	1125.35	5.18	1130.55	5.20	11 35.75	5.22
19%	0127.36	5.32	1212.68	5.33	1218.03	5.35	1223.39	5.37	1228.76	5.38
196	$\begin{array}{lll}0 & 13 \\ 1.36\end{array}$	5.48	136.85	5.50	1312.36	5.51	1317.88	5.53	1323.42	5.55
197	013856.99	5.64	14.2 .64	5.66	14.8 .31	5.68	1413.99	5.6	1419.69	5.7
198	01451.20	5.80	150.01	5.81	1.) $5: 83$	5.83	1511.67	5.84	1517.52	5.86
199	01552.95	5.95	1558.91	5.96	164.88	5.97	1610.87	5.99	1616.87	6.01
200	01653.19	6.10	1659.29	6.1	$17 \quad 5.41$	6.13	1711.54	6.14	17 17.69	6.15
201	01754.87	6.24	$18 \quad 1.12$	6.25	187.38	6.27	18 13.6.5	6.23	1819.94	6.29
202	01857.95	6.38	19 4.33)	39	1910.72	6.40	1917.13	6.42	1923.56	6.43
203	$\begin{array}{lll}0 & 20 & 2.37\end{array}$	6.51	208.88	6.52	2015.41	6.53	2021.95	6.55	2028.50	6.56
204	0218.09	6.63	2114.73	6.65	2121.38	6.66	21 28.05	6.67	2134.72	6.68
20.5	02215.04	6.76	2221.81	6.77	2228.58	6.78	2235.37	6.79	2242.16	6.80
206	02323.19	6.87	2330.07	6.88	23.36 .96	6.89	2343.86	6.91	2350.77	6.92
207	02432.48	6.98	2439.47	6.99	2446.46	7.00	2453.47	7.03	$25 \quad 0.50$	7.03
208	0 25. 42.84	7.09	2.549 .93	7.10	25.57 .01	7.11	26.4 .15	7.12	2611.28	7.13
209	02654.23	7.19	$27 \quad 1.42$	7.20	278.62	7.21	2715.84	$7 . .29$	2723.06	7.23
210	0286.59	7.28	2813.87	7.29	2821.17	7.30	2828.47	7.31	28 35.79	7.39
211	02919.85	7.37	2927.23	7.38	2934.61	7.39	29 42.00	7.40	2) 49.40	7.40
212	03033.97	7.45	3041.43	7.46	3048.89	7.47	30.50 .36	7.48	313.84	7.48
213	03148.88	7.53	3156.41	7.54	32 3.95	7.54	3211.50	$7 . .55$	3219.05	7.56
214	0334.92	7.60	3312.13	7.61	3319.74	7.61	33:3 27.35	7.62	3:3 34.97	7.63
215	03420.84	7.66	3428.51	7.67	3436.18	7.67	3443.86	7.68	3451.54	7.69
216	03.537 .77	7.72	3.545 .49	7.73	3553.22	7.73	36	7.74	36 8.f9	7.74
217	03655.24	7.77	3783.02	7.78	3710.80	7.78	3718.58	7.79	3726.37	7.79
218	03813121	7.82	:38 21.03	7.82	38 28,85	7.83	38319.68	7.83	3844.51	7.83
219	03931.60	7.86	3939.46	7.86	3947.32	7.87	3) 55.19	7.87	$40 \quad 3.06$	7.87
220	04050.35	7.89	4058.24	7.89	416.13	7.90	4114.03	7.90	4121.03	7.90
221	04.39 .40	7.92	4217.39	7.92	42.2 .24	7.92	4233.16	7.9	4241.09	7.93
22.	0 4:3 28.68	7.94	43 37,62	7.94	4:3 44.56	7.94	4.352 .51	7.94	$44 \quad 0.45$	7.94
92:3	04.148 .14	\%.95	445 s .10	7.95	454.05	7.95	4.512 .00	7.96	4519.96	7.96
521	0467.71	+7.96	$46 \quad 15.67$	+7.96	4623.63	+7.86	$46: 31.59$	+7.96	4639.55	+7.96

EQUATION OF THE CENTRE, FOR $m=0$. Constant added 4it' 3^{n}.5. Period $=$ 2.21.70)										
Arg	0.5	fir	$0_{0}^{1.6}$	$\left.\right\|_{\operatorname{ting}} ^{\operatorname{ting}}$	0.7		0.8	${ }_{n i l}^{n}$	d. ${ }^{\text {d }}$	init
$\begin{aligned} & 118 \\ & 168 \\ & 1601 \\ & 1701 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$					$\begin{gathered} -0.01010 \\ 0.0 .018 \\ 0.10 .0 .0 \\ 0.0 .0 \end{gathered}$		$\begin{aligned} & \text { tuot } \\ & 0.01 \\ & 0.46 \\ & 0.04 \\ & 0.64 \end{aligned}$
										$\begin{aligned} & 0.00 \\ & 1.12 \\ & 1.34 \\ & 1.55 \end{aligned}$
$\begin{aligned} & 176 \\ & 172 \\ & 172, \\ & 172, \end{aligned}$			$\frac{1}{2} \frac{15.46}{7.150}$,
$\begin{aligned} & 180 \\ & 181 \\ & 182 \\ & 183 \\ & 183 \end{aligned}$		$\begin{aligned} & 2.54 \\ & 2.75 \\ & 2.96 \\ & 3.16 \end{aligned}$				$\begin{aligned} & 2.58 \\ & 2.79 \\ & 3.00 \\ & 3.20 \end{aligned}$,
$\begin{aligned} & 181 \\ & \hline 185 \\ & \hline 185 \\ & 187 \\ & 187 \end{aligned}$						$\begin{aligned} & 3.11 \\ & \text { a.10 } \\ & 2.010 \\ & 4.00 \end{aligned}$		$\begin{aligned} & 3,1 \times 3 \\ & \text { and } \\ & \text { and } \\ & 4020 \end{aligned}$		cos
$\begin{aligned} & 183 \\ & 189 \\ & 190 \\ & 1901 \end{aligned}$		$\begin{gathered} 4.15 \\ \text { and } \\ 4.00 \\ 4, i=1 \end{gathered}$	8 8 8 810.099 10.46		$\begin{aligned} & 743.921 \\ & 8.4 .1 .1 \\ & 921.20 \end{aligned}$	$\begin{aligned} & 4.10 \\ & 4.48 \\ & 4.85 \\ & 4.75 \\ & 4.76 \end{aligned}$		$\begin{gathered} 4.90 \\ .4010 \\ 4.450 \\ 4.6 \end{gathered}$		cose
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$									cosis
$\begin{aligned} & 196 \\ & 197 \\ & 197 \\ & 1959 \\ & 199 \end{aligned}$	$\begin{aligned} & 0.132 .298 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 1$	$\begin{aligned} & 5.56 \\ & 5.72 \\ & 5.88 \\ & 6.02 \end{aligned}$		$\begin{gathered} 5.58 \\ 5.87 \\ 5.9 .9 \\ 0.94 \\ \hline \end{gathered}$						(tich
$\begin{aligned} & 200 \\ & \begin{array}{l} 201 \\ 201 \\ 2020 \end{array} \\ & \hline 203 \end{aligned}$	02035.02	$\begin{aligned} & 6.17 \\ & .6 .12 \\ & .6 .41 \\ & 0.57 \end{aligned}$		$\begin{aligned} & 8.18 \\ & 0.81 \\ & 0.018 \\ & 0.58 \end{aligned}$			$\begin{aligned} & 18.4 .98 \\ & 19.9 .38 \\ & 20.51 .84 \end{aligned}$	$\begin{gathered} 6.21 \\ 0.2021 \\ 6.618 \\ 6.01 \end{gathered}$		(e.en
$\begin{aligned} & 201 \\ & 2005 \\ & 2006 \\ & 2007 \end{aligned}$					2411.57					,
$\begin{aligned} & 200 \\ & 2001 \\ & 2090 \\ & 290 \\ & 211 \end{aligned}$				$\begin{gathered} 7,1.51 \\ 7,-9.4 \\ 7,-12 \end{gathered}$				$\begin{aligned} & 7.17 \\ & 7.26 \\ & 7.35 \\ & 7.41 \end{aligned}$		
$\begin{aligned} & 219 \\ & 213 \\ & 213 \\ & 214 \end{aligned}$								$\begin{aligned} & 7.51 \\ & 7.59 \\ & 7.65 \\ & 7.71 \end{aligned}$		
$\begin{aligned} & 216 \\ & 217 \\ & 218 \\ & 2189 \end{aligned}$			$\begin{aligned} & 3621.19 \\ & 374.19 \\ & 39.19 .19 \\ & 4018.81 \end{aligned}$	$\begin{aligned} & 7.75 \\ & 7.80 \\ & 7.84 \\ & 7.88 \end{aligned}$				$\begin{aligned} & 7.76 \\ & 7, .61 \\ & 7.48 .48 \\ & 7.88 \end{aligned}$		

Factor to be multiplied by the integer man ; and its Logarithm.												Pcrt. of the Long. Fact. to be $\times\left(\frac{\mathrm{BII}}{1 \mathrm{NiO}}\right)^{2}$		
Arg. 1.	liator.	Log. Fac.	Arg. 1.	Pactor.	Log. Tac	Arg. 1.	Factor.	griac	Arg. 1	Factor.	Log. Pax.	Arg. 1.	Fact.	L. Fac.
$\stackrel{1}{1}$	0.0 no		(i)	-12.596	$n 1.100$	120	2.649	0.4231	180	+12.109	1.0831	0_{0}^{d}	+0.0n	∞
1	0.361	9.5.575	61	12.547	1.098	121	2.990	0.47 .37	181	11.996	1.0790	4	0.22	9.343
2	0.721	!1.8.3)	63	12.488	1.0965	12.	3.328	0.502	1 ± 2	11.875	1.0746	8	0.14	9.648
3	1.051	0.0335	63	12.4:1	1.0942	123	3.663	0.5638	133	11.744	1.069	12	0.66	9.820
4	-1.411	$n 0.15$	64	-12:343	$n 1.09$	124	$+3.997$	0.6017	184	+11.604	1.106	16	$+9.87$	9.933
5	1.799	0.25,	6.3	12.256	$1.0<83$	125	4.326	0.6361	150	11.404	1.0590	29	1.06	$0.12: 27$
${ }_{6}$	9.155	0.33331	66	12.159	1.084!	126	4.65	0.6676	186	11.2:5	1.0529	21	1:2	0.096
\%	2.509	0.3995	67	12.053	1.0511	127	4.976	$0.6016{ }^{3}$	187	11.124	1.0464	23	1.42	0.151
	2.962	$n 0.4567$	6.9	-11.938	$n 1.0763$	123	+ 5.29	0.7239	188	+10.952	1.0395	32	+1.56	0.1911
9	3.212	0.5063	6:	11.813	1.0724	129)	5.511	0.7400	189	10.266	1.10321	36	1.69	0.2!?
11	3.563	0.5014	70	11.(i3)	1.0674	1:30	5.122	0.729.5	193	10.571	1.12:41	40	1.80	0.256
11	3.904	0.5915	71	11.536	1.0631	131	6.233	0.7945	191	10.369	1.0157	44	1.8!)	0.2\%\%
12	4.246	n? 6239	72	-11.385	$n 1.0 .763$	132	$+6.532$	0.8150	122	+10.158	1.0063	43	+1.95	0.991
$1: 1$	4.5×4	0.6612	73	11.226	1,050\%	$13: 3$	6.589	0.834 1	$1!3$	9.939	0.91973	59	1.99	0.299
14	4.915	0.6918	74	11.0.56	1.0436	131	7.121	0.85\%	1:14	9.712	0.9573	56	2.91	0.302
15	5.250	0.7202	75	10.874	1.0366	13.5	7.408	$0.86^{\circ} 17$	195	9.478	0.9767	6	1.99	0.300
16	5.575	$n 0.7462$	76	-10.694	$n 1.02 .91$	136	+ 7.630	0.8859	196	+ 9.235	0.96 .54	61	+1.96	0.292
17	5.8196	0.7706	77	10.501	1.0212	1:37	7.116	0.9012	197	$8.95{ }^{\text {8 }}$	0.953 .5	63	1.31)	$0.27 \times$
18	6.213	0.7933	78	10.299	1.0123	133	8.295	0.9157	193	8.297	0.9400	72	1×1	0.253
19	6.524.	0.8145	79	10.090	1.0039	139	8.498	0.9293	199	8.463	0.925	76	1.71	(1).2.2:
20	-6.830	n^{n}	8.7	- 9.873	$n 0.0944$	140	+8.7.76	0.9423	200	+8.191	0.91	89	+1.5\%	0.193
21	7.131	(1).5.531	81	!1.613	0.9844	141	9.9016	0.954 .5	201	7.914	0.8934	84	1.43	(1.1河
22	7.42 G	0.8717	89	9.417	0.97819	142	9.249	0.9661	202	7.649	11.852	88	1.26	0.101
23	7.715	0.8573	83	9.17%	0.96 ± 7	143	9.486	0.9771	203	7.338	0.8659	92	1.08	0.034
24	7.997	n11.9029	8.1	8.932	$n 9.9509$	144	+ 0.716	0.98%	204	+ 7.042	81	96	+0.8	947
95	8.273	0.9177	85	8.67!)	0.938%	14.5	9.933	0.9973	20.5	6.733	0.8286	101	0.6	9.832
26	8.542	0.11316	86	8.191	0.925	146	10.153	1.0066	206	6.431	0.81):3	104	0.46	0.667
97	8.805	0.9447	87	8.155	0.9114	147	10.360	1.0154	207	6.118	0.7666	108	0.21	9.386
23	-9.060	$n 0.9571$	88	7.883	$n 0.8967$	148	+10.5.9	1.0236	203	$+5.801$	0.763	112	+0	293
2!)	9.300°	0.9659	89	7.6016	0.8812	149	10.7.5)	1.0314	2, 19	5.478	0.7386	116	-0.43	$n 9.310$
30	9.548	0.9719	90	7.32:3	0.8647	150	10.933	1.0387	210	5.150	0.7118	120	0.42	969
:31	9.781	0.9904	91	7.035	0.8473	151	11.108	1.0456	211	4.81!)	0.6830	124	0.61	9.807
32	-10.005	$n 1.0003$	92	6.741	$n 0.8297$	152	+11.274	1.0521	212	+ 4.484	0.6517	123	0.8	n9.929
33	10.2\%:3	1.0019	$9: 3$	6.412	0.8090	$15: 3$	11.432	1.0.i31	213	4.145	0.6175	132	1.n.:	0.0.)
34	10.431	1.01×3	9.	6.138	0.7883	154	11.581	1.06:37	214	3.80:2	0.5300	136	1.2:	0.091
3.5	10.6331	1.0266	95	5.830	0.6657	155	11.721	1.0690	215	3.457	0.5357	140	1.43	0.146
36	-10.82:3	n].03.13	96	5.517	$n 0.7417$	156	+11.8. 21	1.0733	216	$+3.103$	0.4920	144	-1.55	n0.191
37	11.00 .7	1.0416	!	5.209	0.2160	157	11.972	1.07×2	217	2.757	0.4404	143		0.29 c
38	11.179	1.0454	98	4.579	0.6388	158	12.045	1.0822	218	2.404	0.3309	152	1.80	10.2. 1
39	11.344	1.0518	99	4.555	0.6585	159	12.18:)	1.0560	14	2.049	0.3115	156	1.89	0.275
40	-11.500	$n 1.0607$	100	4.297	$n 0.6260$	169	+12.283	1.0893	$2: 0$	+ $1.6!1$	0.9231	160	1.9	2.200
41	11.647	1.0662	101	3.8917	0.5907	161	12.367	1.0123	221	1.3333	0.1243	161	1.99	0.299
42	11.784	- 1.0713	102	3.563	0.5518	162	12.44	1.0549	222	0.174	0.9836	168	2.01	1).30\%
43	11.913	1.0760	$10: 3$	3.527	0.5088	163	12.507	1.0972	2 3	0.613	9.8875	372	2.00	0.300
44	-12.131	$n 1.0893$	104	- 2.888	${ }^{0} 0.4696$	164	+12.563	1.0991	9,	+0.2.33	p!.4031	176	1.	00.293
45	12.140	1.084\%	10.5	2.547	0.4060	165	19.609	1.1007	22	0.1118	n0.0334	180	1.90	0.230
46	12.23!	1.0-2\%	109	2.20 .5	0.3434	166	12.615	1.1019	246	0.469	9.6712	1-1	1.82	0.293
47	12.329	1.090	107	. 863	0.2695	167	12.671	1.1023	427	0.829	$9.918{ }^{\circ}$	183	1.22	0.2.34
48	-12.418	$n 1.0037$	108	-1.514	$n 0.1801$	168	+19.687	1.1034	293	- 1.189	$n 0.07 .52$	192	-1.59	n0.201
49	12.479	1.0369	119	1.167	0.0671	169	12.6933	1.11336	92:)	1.518	0.1898	196	1.14	0.159
50	12.510	1.093:3	110	0.81!)	0.12133	170	12.60	1.1035	2:30	1.906	0.2301	900	1.28	0.106
51	12.590	J.1000	111	0.471	9.6830	\%1	12.676	1.1030	231	2.262	0.3545	204	1.10	0.049
52	-12.630	$n 1.1011$	119	-0.122	$n 9.086 .1$	172	+12.6.53	1.1092	292	- 2.615	$u^{0} 0.41 \%$	208	,	n.9.956
53	12.660	1.1024	113	$+0.227$	p 9.3560	173	12.619	1.1010	$3: 3$	2.968	0.4723	214	0.70	9.843
54	12.631	1.10:32	114	0.575	9.7597	174	12.576	1.090 .5	294	3.317	0.5207	216	0.15	9),
55	12.602	1.1035	115	0.9223	0.196	17\%	12.522	1.0977	235	3.664	0.5610	220	26	9.420
56	-19.692	n1.103.	116	+ 1.281	0.1041	176	+10.459	1.0055	2:36	-4.007	$n 0.6093$	224	-0.01	n5.59.4
2	12.6*3	$1.10: 3$	117	1.617	0.2087	177	12.886	1.092.)	837	4.313	$0.63,353$	224	$+9.18$	$p^{\prime} 9.268$
5.5	19661	1.1026	113	1.963	0.232)	178	11.391	1.0909	2:33	4. 6 \% $\%$	0.67807	232	0.41	0.619
,	19, (6; 3	. 1016	119	2.307	0.31530	179	12.211	1.1863	2:39	5.018	0.7005	2:36	0.62	0.895
(i)	-12.5:6	41.100%	120	+ 2.619	0.42:31	180	+12.10?	$1.08: 31$	240	- 5.319	$n 0.723: 3$	210	+0.83	9.920

'I'le perturbations are expressed in hundredths of a second of are.

Perturbation of the Langitude by the Earth.
Constant added $166^{\prime \prime}$. $\mathbf{(5 5}$.
1'eriod of Argument VI., 583 d .92.

Arg. V1.	Equa.	Arg. VJ.	Lqua.	Arg. V1.	Lqua.	Arg. V1.	Equa:	Arg. VI.	Equa.	Arg. V1.	Equa.
${ }^{\text {d }}$	J668	$104^{\text {d }}$	47	208	27:0	312	91%	$416^{\text {d }}$	2093	520	2456
2	16.1	106	31	210	(37\%	314	846	418	217:	529	2405
4	1675	108	13	212	25:1	316	783	420)	2249	521	2354
6	$16 \hat{7}$	110	8	214	2866	318	\%19\%	429	9356	596	9303
8	1679	112	3	216	2908	$3{ }^{2} 0$	664	424	2400	528	29.94
10	1680	114	0	2 i	2046	322	609	426	2473	$5: 30$	2205
12	1675	116	${ }_{2}$	220	$29 \% 9$	39,	5.57	428	2.44	532	2158
14	1676	118	7	22	3009	326	509	430	9613	534	2112
16	$16 \% 1$	120	16	2.4	30:35	328	464	432	2680	536	2068
18	1664	122	28	226	3057	:330	423	483	2744	$5: 3$	295
20	165\%	12.	45	223	3074	3:9	385	4:36	280.5	5.10	1985
:22	1643	126	65	230	3087	334	359	438	$2 \checkmark 63$	5.12	1946
94	1693	123	90	232	3095	336	322	440	2913	5.41	1910
26	1611	130	113	234	3099	335	$2!6$	442	2971	546	1875
23	1591	132	149	236	3099	340	275	44.4	$30: 0$	548	184:1
30	1569	134	185	233	3095	342	253	446	3065	550	181:1
32	1544	136	224	240	3086	344	245	448	3108	559	1786
34	1517	138	266	242	3073	346	237	450	314	5 T 4	1762
36	1486	140	315	244	3055	348	233	452	3152	5.56	1740
33	1454	142	361	246	3033	350	233	454	3 ± 14	5 5 8	1721
40	1419	144	414	248	3007	352	937	456	3941	560	1704
$4 \cdot$	1332	146	470	250	2977	354	246	4.38	$: 1265$	562	1690
44	1343	148	523	252	2943	336	259	460	3255	564	1679)
46	1302	150	590	254	2905	353	277	462	3302	566	1670
48	1259	152	654	256	2864	360	299	464	3314	568	1663
50	1×14	154	720	258	2818	362	325	466	:3:393	570	1659
59	1168	156	789	260	970	36.4	35.3	468	1332	57:	1956
51	1120	158	860	262	2717	366	389	470	3329	574	1655
56	107!	160	933	264	2662	368	426	47.3	3337	576	16.96
58	102\%	169	1008	266	2604	370	468	474	3320	578	16.58
60	971	164	1084	263	2542	372	514	476	$3: 311$	580	1661
63	130	166	1169	270	2479	374	563	473	3:9\%	582	1664
64	868	168	124]	272	241:	376	615	480	3230	584	1668
66	816	170	1321	274	2344	378	671	485	32(6)	586	1671
(i8)	764	17:	1402	276	2973	380	7 T!	484	32:37	588	1675
70	712	174	1483	978	$2: 31$	382	791	486	3211	$5!9$	1677
72	660	176	1564	280	2127	384	85.5	488	3182	592	1679
74	609	178	1646	282	2051	3 ± 6	$92 ?$	490	31.50	594	1680
76	5.59	180	1727	234	19\%5	388	091	419	3116	596	1678
78	510	182	1808	206	1897	390	106:3	494	$30 \% 9$	598	1696
80	46%	184	1898	233	1819	392	$11: 17$	406	30.39	600	1671
82	415	186	1967	290	1740	394	1219	498	9! 919	602	1664
84	370	188	2046	202	1661	396	1:28!	500	2954	604	1635
86	327	190	2123	294	1582	398	1367	502	2009	606	1642
88	(25.5	192	2198	296	1504	400	1446	504	2863	608	1627
90	946	1194	2432	2498	1496	402	1527	506	2814	610	1610
99	210	196	$2: 143$	300	1348	404	1607	508	2764	612	1590
94	175	1193	2413	302	1279	406	1681	510	2714	614	1568
96	144	200	2479	304	1197	403	170)	512	2663	616	1543
18	115	209	2.44	306	1123	410	1851	514	2612	618	1516
100	89	204	2605	3018	1051	412	1939	516	2.660	$6: 3$	1485
102	67	206	2661	310	980	414	2013	518	2508	6 ± 1	14.53
104	47	21)8	2720	312	912	416	2093	520	2456	624	1418

The perturbations are expressed in hundredths of a second of are.

Add 33.26 to Arg . X. when $224^{\mathrm{d}} .7$ is subtracted from Arg . I.

	Perturbations of the Longitude by the Earth. Horizontal Argument $=1$. onstant added J'". 40. Period of Argument 1. 224.7.														
Arg. $\mathbf{X 1}$.	0^{d}	s^{d}	16^{1}	$2{ }^{\text {d }}$	$3 \pm$	40^{10}	44^{4}	56^{d}	$6 i^{\prime \prime}$	$8 \stackrel{1}{2}$	80^{d}	88	$96^{\prime \prime}$	H0 ${ }^{1}$	1退 ${ }^{\text {a }}$
0	71	80	88	94	98	100	102	105	110	117	127	140	153	165	177
1	63	21	79	85	88	90	92	95	99	105	115	126	139	15\%	161
2	55	63	71	76	79	81	82	85	88	94	102	113	126	138	151
3	49	56	63	63	71	72	73	75	77	89	91	101	11:3	126	138
4	4.	50	56	60	63	64	65	66	68	72	80	90	101	114	126
5	40	45	50	54	56	57	57	58	59	63	70	79	00	102	115
6	33	42	47	50	51	52	51	51	52	55	61	70	81	92	10.5
7	32	4.2	45	47	43	48	47	47	47	49)	54	62	-i	84	9.5
8	42	43	46	47	47	47	45	44	43	45	49	56	65	76	87
9	47	47	48	49	49	48	45	43	4:	42	45	51	60	70	81
10	54	53	53	54	5.3	51	43	45	43	42	44	49	56	65	75
11	63	61	61	60	51	57	53	49	46	44	45	43	54	62	71
12	73	71	70	69	67	64	61	56	51	49	47	49	5.3	(i)	67
13	84	82	81	80	77	34	70	64	59	5	52	52	5.3	5.9	66
14	95	94	92	91	89	85	80	74	68	6:	58	57	5	61	65
15	107	106	104	103	101	97	9	85	78	72	66	63	62	63	66
16	118	117	116	115	114	10.9	104	!7	89	82	75	70	68	67	6!)
17	$1 \cdot 3$	123	123	127	125	121	116	103	100	92	84	78	7.1	73	73
18	1:38	$1: 36$	$1: 38$	137	136	13.2	127	119	111	112	94	87	$8:$	79	78
19	146	146	146	146	145	141	136	129	121	112	103	95	90	86	83
20	1.53	1:3	153	153	152	148	144	137	129	120	111	103	97	93	90
21	158	108	158	158	157	154	150	144	136	127	118	110	104	100	9%
22	163	162	162	15%	161	158	154	148	140	133	124	116	111	106	103
23	166	160	164	163	162	160	156	150	1113	1336	128	121	115	112	109
24	168	166	165	164	163	160	156	151	145	138	130	124	119	116	114
6	170	167	165	164	169	160	156	151	144	133	131	125	121	119	117
26	172	168	16:3	163	161	158	154	149	143	136	130	124	121	119	11!)
27	174	169	166	163	160	157	152	147	140	$1: 14$	128	123	120	119	11!)
23	176	171	167	164	160	156	151	144	138	131	125	$1 \geqslant 0$	117	116	117
29	179	174	16!)	165	161	156	150	143	136	123	122	116	113	11:	114
30	183	17\%	172	167	162	157	150	143	135	126	118	112	109	107	109
31	187	181	176	171	166	150	159	144	134	125	116	109	104	102	103
32	190	185	181	176	370	163	155	146	135	125	114	106	100	97	! 17
33	194	190	186	182	176	16.9	160	150	138	126	114	10.1	96	92	!)
34	198	195	192	188	183	176	166	156	143	129	115	104	0.1	83	86
35	201	200	198	195	190	183	174	169	149	134	119	10\%	94	86	82
36	204	204	203	202	197	191	182	170	156	140	124	108	95	86	80
37	205	208	208	207	204	199	191	179	164	148	131	114	99	87	80
38	205	208	211	212	211	206	199	188	174	157	139)	121	105	92	83
39	204	209	213	216	216	213	207	198	184	167	149	130	113	98	88
40	201	208	214	218	2%	219	215	206	194	178	160	141	'123	107	95
41	107	205	213	219	223	924	221	215	203	189	171	15:3	134	118	105
42	192	202	211	219	225	228	296	29	213	200	183	165	147	130	116
43	186	197	208	217	225	930	2311	299	291	211	196	178	161	143	12!)
44	179	192	203	214	224	231	235	234	929	221	207	191	175	158	143
45	172	185	198	210	229	231	237	239	236	230	219	204	188	17\%	157
46	167	178	192	206	218	230	2:38	242	2.13	238	2:29	216	201	186	171
47	15%	171	186	200	214	297	2:38	245	217	245	2:38	237	213	199	184
48	150	163	178	19.1	209	$2 \cdot 4$	236	246	250	250	246	$2: 37$	224	211.	196
49	14\%	156	171	187	204	220	234	245	252	254	252	245	234	222	208
50	134	147	162	179	197	214	239	213	252	237	256	251	242	231	218
51	126	139	15.4	170	18!	907	$2 \cdot 5$	235	250	257	259	255	248	2:3	226
52	117	129	144	161	180	19\%	218	234	246	2.56	2.9	258	252	243	23:
53	108	119	133	150	169	189	209	226.	241	959	9.5	2.88	254	947	9337
54	915	109	192	133	157	178	198	2177°	233	245	953	256	254	249	240
5	90	93	110	125	144	164	185	205	223	237	247	251	259	298	212
56	81	87	97	111	199	149	170	191	210	2326	2:38	24.5	2.18	246	241
57	72	76	84	96	113	133	154	175	196	213	297	236	211	242	239
58	63	64	70	81	$!9$	115	136	158	179	198	214	4	2:33	236	235
59	55	54	57	66	73	97	117	139	161	181	19\%	212		223	2:30
60	49	45	$4{ }^{\circ}$	51	63	79	98	11.9	141	16.3	10%	198	210	218	2:3

Perturbations of the：Lengitude by the Earth． Ilurizumtal A rgument $=1$.															
Constant added 1＇．10．Period of Argamemite 210															
	$120^{\prime \prime}$	12＊＊	$136^{\prime \prime}$	111	15＊	$160^{\prime \prime}$	168	176	181	19%	200	208	$216^{\prime \prime}$	221	238
0	158	195	201	214	20.3	206	406	2017	2）：	211	21：1	214	21.1	211	2） 5
1	120	183	$1 \leq 15$	193	19	1！\％	198	211	204	218	212	215	216	25	211
\％	$16 \pm$	170	176	102	18.5	$1-7$	$1: 10$	11：3	$1: 13$	203	209	213	217	218	21.5
3	1．1！	$1: 17$	166	171	17.1	1i＊	151	18.5	$1: 19$	197	20.4	211	216	219	218
4	$13 *$	117	15.5	160	161	16：	172	177	$1 \geq 3$	1：0	199	207	21.4	218	219
5	127	136	141	150	15.5	1.54	16：3	163	1\％	18：3	193	20）	210	216	219
6	116	197	13.1	1.11	11.7	149	1.54	159	1616	176	1－6	$1: 46$	211	214	213
7	110	117	12.5	13：	137	140	14．：	1，51	1.15	11 is	179	191）	2.1	211	217
，	（9）	101	117	$1: 1$	123	119	1：37	142	1.50	15．）	171	1×3	196	2is	21.5
1	12	101	$10: 3$	116	120	121	128	134	141	1.15	16.4	$1: 7$	191	20.1	24
10	8	\％	102	3ns	112	116	120	125	133	113	$1: 96$	170	186	200	21：
11	80	8	96	101	10．5	109	11：1	117	124	11.5	1．19	161	1×3	196	21
13	76	84	90	95	99	102	30.5	110	117	127	1.11	1.5	17．15	192	$29!$
1：1	73	80	$8 i$	91	93	9	93	102	109	119	1：31	1：50	16．）	1s9	217
14	71	77	81	85	87	89	92	45	102	112	126	14：3	163	18.1	234
15	21	75	78	81	$8: 3$	8.1	86	89	95	10.5	119	136	157	179	231
16	72	2	77	89	80	80	82	84	$8!$	\％	111	129	150	174	197
17	74	76	77	78	5	77	78	79	$8: 3$	12	105	143	143	167	$1!8$
13	78	78	79	79	78	76	76	76	7！	86	！8	11.5	136	163	18.
19	83	83	\％	81	79	77	75	7.4	\％6	82	92	108	128	151	177
$9)$	89	48	86	85	82	79	76	73	74	78	87	101	119	142	163
21	9.5	94	92	90	87	$8: 3$	78	7.1	73	75	82	91	111	132	15%
${ }^{2}$	102	101	99	96	9	87	89	78	7． 1	\％ 4	78	98	10：1	192	146
23	108	107	115	103	99	93	87	81	75	7：3	7.	83	35	112	131
24	114	113	11：	110	105	100	93	$8 \bar{\square}$	78	74	73	78	87	102	122
2	118	118	117	116	111	106	98	90	82	76	72	74	81	93	110
26	120	121	123	121	117	112	104	95	86	78	$7: 1$	72	76	85	99
27	121	123	120	12.5	122	117	110	101	90	81	24	71	72	73	99
24	12：	12：1	126	127	12，	121	115	106	95	8.1	76	71	69	$7: 1$	82
2．）	117	121	125	127	127	124	118	110	99	88	78	72	63	69	76
30	113	117	129	126	127	126	121	113	103	99	81	4	69	67	71
31	107	112	118	123	12.5	125	121	115	106	96	85	77	70	67	69
32	100	106	112	118	122	121	121	11%	103	99	88	80	72	69	（is
33	94	99	106	113	118	121	120	117	110	101	9	83	76	71	63
34	88	9%	99	107	113	117	118	117	111	104	95	87	39	24	3
35	83	86	93	101	108	113	116	116	112	106	98	91	83	\％	7
36	79	82	88	96	103	119	114	11.5	113	10.3	102	9	87	82	78
37	78	79	8.5	$!2$	100	107	112	114	113	110	10.	99	92	46	$8!$
38	78	$3!$	83	90	93	105	111	114	115	112	103	103	0	91	8
39	82	81	84	90	98	105	111	115	117	115	111	107	100	95	91
40	88	85	87	93	100	107	113	118	119	118	115	111	105	100	9.5
41	96	92	93	97	104	110	117	121	123	129	119	115	109	104	99
42	106	101	101	103	109	115	121	126	127	1197	124	120	114	109	104
43	118	111	110	112	116	122	127	131	133	133	12：）	12	119	114	109）
44	131	123	120	121	125	130	135	138	139	139	136	131	125	119	114
45	144	136	132	132	134	$1: 18$	142	14.5	146	146	142	137	131	12.5	129
46	158	149	144	142	144	147	151	15.3	154	15.3	149	14.4	138	132	126
47	171	161	15.7	153	153	156	159	169	161	160	156	151	145	$13: 4$	133
4.3	154	173	166	163	163	164	167	168	169	167	163	158	150	146	141）
49	195	184	126	172	171	172	174	130	176	37.4	170	165	159	153	143
5	295	194	185	181	179	179	189	181	182	180	177	172	166	160	15.3
51	213	202	193	189	135	185	126	187	187	186	183	178	172	167	162
没	等	209	200	194	191	190	191	192	$1!2$	191	188	184	178	1711	163
5	226 230 230	21.5	206		196 201	190	${ }_{1}^{1199}$	196	196 200	195	192 196	192	183	178	173 177
54	230	220	211	235	201	192	199	199	200	193	196	192	107	189	177
	233	24	215	203	205	202	202	203	202	201	103	195	190	184	179
56	$2: 34$	226	218	$21:$	208	20	20.4	20.3	205	203	230	197	191	146	1×1
：7	2：34	427	䐴	215	211	239	2107	208	207	${ }_{202} 2.8$	202	193	19	156	130
5	－	227		218	214	214	210	210 212	29！	2）7	293 20.1	1198	192	18.4	179
$6)$	24	241	202	220	218	216	21．，	215	213	210	20.	198	191	153	171

Add 147.64 to Arg．XI．when 294.5 is subtracted from Arg． 1.

たニテニゴ心	こニご，		－후心夊心気		以忒ご边	gractut	$x_{4}^{\text {¢ }}$	－1がごごこ	二发忒ご気	898\％	은읭	$\underset{y y y y}{c}$	
					ご心忒忒			cigctis	gacace	い気忥気島		$\stackrel{6}{6}$	
－				気忥志馬嵒	※ニデ怘合。	忥忥呺		\％\square^{5}	¢ンがすご			念	
			或呺気灾			こsxax	$x=159$	¢88를				\％	
						$3^{-2} a^{-2}=\overrightarrow{3}$	二小心灾乐	8タミニ゙	¢○このごさ	忥或気言突		$\stackrel{m}{m}$	
						99크릐	긍9응					$\begin{aligned} & \text { 思 } \\ & \text { 空ニ } \end{aligned}$	
			気気心忒	드ㅇㅡㄸํํㅇํㅇ	¢cysigis	989얭	ダすごぐに	※x ¢ ¢				$\stackrel{y}{\delta}=$	
		或ごご突			㐫会会会感	citg cis		色念总に突	或忥忥詋区			－	
		忒矛或或总		或芽ご芯去		式ggit						$\begin{aligned} & \text { E } \\ & \text { ean } \end{aligned}$	
	忥気気匂灾	す⿹勹口欠心ごす	8－¢ ¢ ¢									年	
			준ํㅡㄹ				シここに笖苞	気気気ご湯			ただきだった。	$\begin{aligned} & m \\ & B=3 \\ & B= \end{aligned}$	
或気気気灾	બ゙ず¢ ¢ ¢			式	$\underset{\sim}{\omega}$	รษ์ ล์			cos_{-1}^{10}		きたほきだす	180	
		愛炎ここの	可枵式合合		枈念忒咸发		或忥気氙					${ }_{0}^{10}$	
			ごの訋き会			ごごミ	気忥忥ご気				忥忥宗宫	＊	
式ご忒ごご気	忥氙玉忥灾	灾気忥ぎ			¢						뚜cay	伿	
					옹N心令	岩华氙玄突	或ご気気			可或こご気	可ごこここ	迌	

Perturbations of the Lonnsitule liy the Earrth. Horizontal Argunent $=1$.															
.rg.x1	120	$12{ }^{18}$	18\%	11^{11}	1.32	190	$14{ }^{\text {¢ }}$	176	181	192	203	$208{ }^{8}$	$216^{\text {d }}$	${ }^{1}$	$233^{\frac{1}{2}}$
		$\begin{aligned} & 1010 \\ & \begin{array}{l} 168 \\ 1050 \\ 141 \end{array} \end{aligned}$											ais		
					$\begin{aligned} & 170 \\ & \hline 1061 \\ & \hline 140 \\ & 130 \\ & 130 \end{aligned}$		$\begin{aligned} & 196 \\ & 190 \\ & 170 \\ & 1750 \\ & 1.46 \end{aligned}$								
	$\begin{aligned} & 83 \\ & 88 \\ & 80 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 87 \\ & 97 \\ & 97 \end{aligned}$			$\begin{aligned} & 110 \\ & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 193 \\ & \substack{193 \\ 110 \\ 106 \\ 1005} \end{aligned}$	$\begin{gathered} 137 \\ 192 \\ 192 \\ 116 \\ 113 \end{gathered}$		$\begin{aligned} & 161 \\ & 1.65 \\ & 1.10 \\ & 1134 \\ & 134 \end{aligned}$		$\begin{gathered} 1-6 \\ \substack{179 \\ \text { and } \\ 165 \\ 1505} \end{gathered}$	$\begin{aligned} & 198 \\ & 1810 \\ & 171 \\ & 177 \\ & 172 \end{aligned}$			
$\begin{aligned} & 113 \\ & 1.16 \\ & \text { and } \\ & 137 \\ & 1390 \end{aligned}$		$\begin{aligned} & 1919 \\ & 119 \\ & \text { and } \\ & 1297 \\ & 139 \end{aligned}$	$\begin{aligned} & 103 \\ & 110 \\ & 118 \\ & 1206 \\ & 135 \end{aligned}$		$\begin{aligned} & 193 \\ & 107 \\ & 113 \\ & 1193 \\ & 125 \end{aligned}$		$\begin{aligned} & 111 \\ & 112 \\ & 1126 \\ & 1119 \end{aligned}$	$\begin{aligned} & 119 \\ & 117 \\ & 1116 \\ & 1117 \end{aligned}$		$\begin{aligned} & 149 \\ & 139 \\ & 130 \\ & 130 \\ & 190 \\ & \hline 9 . \end{aligned}$				$\begin{aligned} & 189 \\ & 171 \\ & 170 \\ & 160 \\ & 160 \end{aligned}$	
	$\begin{aligned} & 136 \\ & \left.\begin{array}{l} 136 \\ \text { ar } \\ 137 \\ 137 \end{array}\right) \end{aligned}$	$\begin{aligned} & 139 \\ & \substack{13 \\ 1.14 \\ 143 \\ 141} \end{aligned}$		$\begin{aligned} & 135 \\ & 1.10 \\ & 1,13 \\ & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 133 \\ & 135 \\ & 139 \\ & 1.41 \\ & 142 \end{aligned}$	$\begin{aligned} & 1969 \\ & 139 \\ & 133 \\ & 139 \\ & 135 \end{aligned}$		$\begin{aligned} & 118 \\ & 119 \\ & 190 \\ & 1201 \\ & 120 \end{aligned}$	$\begin{aligned} & 117 \\ & 1116 \\ & 116 \\ & 116 \end{aligned}$	$\begin{aligned} & 119 \\ & 119 \\ & 1114 \\ & 1109 \end{aligned}$	$\begin{aligned} & 193 \\ & 119 \\ & 1115 \\ & 110 \\ & 106 \end{aligned}$	$\begin{aligned} & 135 \\ & 125 \\ & 119 \\ & 119 \\ & 109 \end{aligned}$	$\begin{aligned} & 110 \\ & \text { and } \\ & 133 \\ & 139 \\ & 1111 \end{aligned}$		$\begin{aligned} & 16 . \\ & \begin{array}{l} 169 \\ 1.411 \\ 1111 \\ 1.123 \end{array} \end{aligned}$
$\begin{aligned} & 146 \\ & 1.16 \\ & 1.17 \\ & 1.14 \\ & 149 \end{aligned}$		$\begin{aligned} & 1373 \\ & 133 \\ & 1393 \\ & 123 \\ & 113 \end{aligned}$	$\begin{aligned} & 1423 \\ & \text { and } \\ & 1353 \\ & 13505 \end{aligned}$	$\begin{aligned} & 1131 \\ & 133 \\ & 133 \\ & 138 \\ & 130 \end{aligned}$	$\begin{aligned} & 1414 \\ & 139 \\ & 137 \\ & 138 \\ & 139 \end{aligned}$	$\begin{aligned} & 133 \\ & \text { and } \\ & 13,31 \\ & 1301 \end{aligned}$	$\begin{aligned} & 1288 \\ & 128 \\ & 127 \\ & 1266 \end{aligned}$	$\begin{aligned} & 129 \\ & 119 \\ & 1118 \\ & 117 \end{aligned}$	$\begin{aligned} & 113 \\ & 111 \\ & 110 \\ & 109 \\ & 108 \end{aligned}$	$\begin{gathered} 106 \\ 106 \\ 101 \\ 0101 \\ 0,0 \end{gathered}$	$\begin{aligned} & 109 \\ & 9.9 \\ & 9 . \\ & 91 \\ & \hline 98 \end{aligned}$				$\begin{aligned} & 129 \\ & 1101 \\ & 101 \\ & 9.19 \\ & 79 \end{aligned}$
			$\begin{aligned} & 191 \\ & 117 \\ & 111 \\ & 111 \end{aligned}$	$\begin{aligned} & 126 \\ & 123 \\ & 129 \\ & 1118 \\ & 118 \end{aligned}$				$\begin{aligned} & 116 \\ & 116 \\ & 117 \\ & 117 \end{aligned}$	$\begin{aligned} & 107 \\ & 107 \\ & 109 \\ & 109 \\ & 110 \end{aligned}$	$\begin{aligned} & 96 \\ & 96 \\ & 96 \\ & 979 \\ & 997 \end{aligned}$	$\begin{aligned} & 85 \\ & 83 \\ & 83 \\ & 83 \\ & 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 76 \\ & 7.3 \\ & 71 \\ & 70 \\ & 71 \\ & 71 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \\ & 50 \\ & 50 \\ & 507 \\ & 50 \end{aligned}$		
$\begin{aligned} & 186 \\ & \begin{array}{l} 107 \\ 150 \\ 150 \\ 159 \end{array} \end{aligned}$	$\begin{aligned} & 102 \\ & 100 \\ & 100 \\ & 1113 \\ & 119 \end{aligned}$	$\begin{aligned} & 107 \\ & \begin{array}{l} 107 \\ 109 \\ 109 \\ 1116 \end{array} \end{aligned}$	$\begin{aligned} & 110 \\ & 111 \\ & 1113 \\ & 1116 \\ & 116 \end{aligned}$	$\begin{aligned} & 1166 \\ & 1116 \\ & 118 \\ & 118 \end{aligned}$	$\begin{gathered} 129 \\ 120 \\ 120 \\ 1290 \\ 1200 \end{gathered}$	$\begin{aligned} & 193 \\ & 123 \\ & 193 \\ & 193 \\ & 193 \\ & 1 \times 3 \end{aligned}$	$\begin{aligned} & 123 \\ & 193 \\ & 193 \\ & 1920 \\ & 190 \end{aligned}$	$\begin{aligned} & 120 \\ & 192 \\ & 193 \\ & 1230 \\ & 120 \end{aligned}$		$\begin{aligned} & 102 \\ & \text { jon } \\ & 1010 \\ & 1114 \\ & 118 \end{aligned}$		$\begin{aligned} & 73 \\ & 78 \\ & 81 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 56 \\ & 59 \\ & 94 \\ & 79 \\ & 79 \end{aligned}$		
			$\begin{aligned} & 119 \\ & 1,96 \\ & 1.196 \\ & 145 \end{aligned}$	$\begin{aligned} & 11929 \\ & 1926 \\ & 1296 \\ & 138 \\ & 138 \end{aligned}$				$\begin{aligned} & 1929 \\ & 1920 \\ & 130 \\ & 138 \\ & 134 \end{aligned}$	$\begin{gathered} 126 \\ \substack{190 \\ 1.13 \\ 139 \\ 137} \\ \hline \end{gathered}$		$\begin{aligned} & 1111 \\ & \substack{1112 \\ 1.18 \\ 133 \\ 139} \end{aligned}$			(
				$\begin{aligned} & 146 \\ & 1,50 \\ & 1,505 \\ & 1990 \\ & 192 \end{aligned}$	$\begin{aligned} & 149 \\ & 148 \\ & 1,168 \\ & 169 \\ & 189 \end{aligned}$	$\begin{aligned} & 13 \pi \\ & 1,43 \\ & 1,50 \\ & 1 ; 61 \\ & 1=1 \end{aligned}$	$\begin{gathered} 136 \\ 1.19 \\ 1,17 \\ 169 \end{gathered}$	$\begin{aligned} & 137 \\ & 141 \\ & 4195 \\ & 1515 \\ & 153 \end{aligned}$	$\begin{aligned} & 119 \\ & \hline 143 \\ & 4197 \\ & 1515 \\ & 156 \end{aligned}$	$\begin{aligned} & 1464 \\ & \hline 146 \\ & \hline 143 \\ & 153 \\ & \hline 58 \end{aligned}$	$\begin{gathered} 144 \\ \substack{148 \\ 5 \\ 5150 \\ 150 \\ 150} \end{gathered}$		$\begin{aligned} & 131 \\ & 112 \\ & 154 \\ & 159 \\ & 163 \\ & \hline 163 \end{aligned}$		
						$\begin{aligned} & 183 \\ & \hline 1051 \\ & 2027 \\ & 2139 \\ & \hline 130 \end{aligned}$			$\begin{aligned} & 169 \\ & \hline 169 \\ & \hline 176 \\ & \hline 1819 \\ & 190 \end{aligned}$	$\begin{aligned} & 161 \\ & 166 \\ & 176 \\ & 776 \\ & 762 \end{aligned}$				$\underset{\substack{16 \pi \\ 170 \\ 171 \\ 171}}{\substack{12}}$	
												$\begin{aligned} & 17 \% \\ & 170 \\ & 170 \\ & 1701 \\ & 183 \end{aligned}$		(1701	

Constant added 1 1/40.															
Afg. $\mathrm{M1}$.	¢	${ }_{8}^{8}$	${ }_{16} 16$	din	$3^{2} 2$	ic	A's	56	62.	$\stackrel{4}{2}$	sio	sis	${ }_{96}$	108	$11^{2} 2$
$\begin{aligned} & 181 \\ & \begin{array}{l} 188 \\ 183 \\ 184 \end{array} \end{aligned}$		$\begin{gathered} 68 \\ 70 \\ 70 \\ 78 \\ 70 \\ 70 \end{gathered}$	$\begin{gathered} 7 . \\ 78 \\ 78 \\ 78 \end{gathered}$		$\begin{aligned} & 79 \\ & 78 \\ & 78 \end{aligned}$	$\begin{aligned} & 97 \\ & 90 \\ & 80 \\ & 85 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 108 \\ & 90 \\ & 99 \\ & 89 \\ & 89 \end{aligned}$	$\begin{aligned} & 19 \\ & 107 \\ & 90 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 1266 \\ & 106 \\ & 105 \\ & 95 \\ & 97 \end{aligned}$	$\begin{aligned} & 100 \\ & 110 \\ & 110 \\ & 190 \\ & 89 \end{aligned}$	$\begin{aligned} & 150 \\ & 130 \\ & 1130 \\ & 104 \\ & 104 \end{aligned}$		$\begin{aligned} & 1727 \\ & 176 \\ & 136 \\ & 109 \\ & 109 \end{aligned}$	$\begin{aligned} & 186 \\ & 1.64 \\ & 1.129 \\ & 112 \end{aligned}$	$\begin{aligned} & 1798 \\ & 170 \\ & 1601 \\ & 1.23 \\ & 120 \end{aligned}$
$\begin{aligned} & 185 \\ & 1186 \\ & 187 \\ & 180 \\ & 189 \end{aligned}$	$\begin{gathered} 87 \\ 97 \\ 90 \\ 90 \\ \hline 1010 \end{gathered}$	$\begin{gathered} 83 \\ .87 \\ .97 \\ \hline 9 . \\ 100 \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 93 \\ & 97 \\ & 97 \end{aligned}$	$\begin{aligned} & 79 \\ & 89 \\ & 89 \\ & 89 \\ & 89 \\ & \hline 9 . \end{aligned}$	79 81 84 87 67	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 805 \\ & 889 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 81 \\ & 78 \\ & 78 \\ & 78 \\ & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & 82 \\ & 76 \\ & 78 \\ & 70 \\ & 70 \\ & \hline 0 . \end{aligned}$		$\begin{aligned} & 85 \\ & \begin{array}{l} 85 \\ 68 \\ 63 \\ 60 \\ 60 \end{array} \end{aligned}$		$\begin{aligned} & 973 \\ & 83 \\ & 83 \\ & 68 \\ & 58 \end{aligned}$	107 98 81 81 1
1	${ }_{\text {H }}^{111}$	${ }_{\substack{105 \\ 100}}$	${ }_{\substack{101 \\ 106}}$	${ }^{193}$	${ }^{95}$	${ }_{96}$	${ }^{92}$	${ }_{87}^{83}$	81	${ }_{2}$	${ }_{66}^{64}$	59]	5	5	- 5
$\begin{aligned} & 1999 \\ & 193 \\ & 193 \end{aligned}$	$\begin{aligned} & 115 \\ & 1951 \\ & 1297 \end{aligned}$	$\begin{aligned} & 11016 \\ & 1,262 \end{aligned}$	1	$\begin{aligned} & 103 \\ & 1114 \\ & 114 \end{aligned}$	cilio	$\begin{gathered} 969 \\ 102 \\ 102 \end{gathered}$	$\begin{array}{r} 97 \\ \\ \hline 104 \end{array}$	$\begin{aligned} & 87 \\ & 98 \\ & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & 81 \\ & 81 \\ & 91 \\ & 91 \end{aligned}$	$\begin{aligned} & 74 \\ & 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 66 \\ & 70 \\ & 744 \\ & 74 \end{aligned}$	$\left.\begin{array}{l} 59 \\ 689 \\ 60 \\ 60 \end{array}\right)$	$\begin{aligned} & 54 \\ & 56 \\ & 58 \\ & 58 \end{aligned}$	¢	
194	133	129	124	121	118	114	111	105	${ }^{98}$	${ }_{90}$	4	\%	${ }_{62}$	${ }_{56}^{54}$	${ }_{53}^{53}$
${ }_{\substack{195 \\ 196 \\ 1}}^{1}$	140 147 1	136 143 14	131 138 1	${ }^{1238}$	${ }^{125}$	${ }^{192}$	118	${ }^{113}$	${ }^{106}$	98	9	,	20	d	55
linc		143 150 157 1	${ }_{1}^{133} 1$	136 143 15	${ }_{\substack{133 \\ 140 \\ 148 \\ \hline \\ \\ \hline}}$	${ }_{\substack{130 \\ 138}}^{14}$	127 135 13	${ }_{\substack{121 \\ 131}}^{110}$	115	cin	ciot	(84	\% 78	- 64	${ }^{581} 6$
${ }_{199}^{1,18}$	$\begin{gathered} 1661 \\ \hline 168 \end{gathered}$	157 164	${ }_{150}^{153}$	${ }^{150} 15$	148 156 1	${ }_{154}^{146}$	144 .152	${ }_{14}^{140}$	1	${ }_{134}^{194}$	${ }_{12}^{113}$	${ }_{109}^{100}$	${ }^{87}$	81	${ }_{6}^{65}$
${ }^{200}$	1738	${ }^{17}{ }^{174}$	${ }^{161}$	${ }^{164}$	${ }^{163}$	${ }_{161}^{167}$	${ }^{160}$	${ }^{157}$	151	${ }^{143}$	131	${ }_{117}^{127}$	${ }^{102}$	04	\%
$\begin{aligned} & 2020 \\ & \hline 2020 \\ & 2020 \end{aligned}$	$\begin{aligned} & 188 \\ & \hline 184 \\ & 184 \end{aligned}$	$\substack{178 \\ 180}$	${ }_{\substack{174 \\ 176}}$	-	1168 174 174 1	$\begin{aligned} & 1767 \\ & 1724 \\ & 1720 \end{aligned}$	$\begin{aligned} & 1672 \\ & 1720 \\ & 1720 \end{aligned}$	$\begin{gathered} 1601 \\ 1740 \\ 174 \end{gathered}$	${ }_{1} 171$	$\begin{aligned} & 155 \\ & 158 \\ & 164 \end{aligned}$	${ }_{\substack{117 \\ 154}}$	${ }_{\substack{133 \\ 140}}^{14}$	-	coid	
204	185	180	176	174	174	175	${ }_{176}^{172}$	${ }_{176}$	171	${ }^{168}$	${ }_{159}$	${ }_{146}^{140}$	130	${ }_{113}$	${ }^{90} 9$
${ }_{205}^{295}$	${ }_{184}^{184}$	180 178 18	${ }_{173}^{175}$	${ }^{173}$	${ }_{\substack{173 \\ 169}}$		${ }_{172}^{175}$	${ }_{1}^{174}$	${ }_{\substack{175 \\ 174}}^{175}$	171	${ }_{1}^{162}$	${ }_{\substack{151 \\ 155}}$	${ }_{\substack{136 \\ 1.41}}$	$\xrightarrow{119} 1$	${ }_{\substack{101 \\ 107}}$
$\substack{210 \\ 208 \\ 208}$ 2	$\begin{aligned} & 1888 \\ & \begin{array}{l} 182 \\ 181 \end{array} \end{aligned}$	${ }^{175}$	166	${ }_{160}^{165}$	${ }_{\substack{1 \\ 158}}^{\substack{164}}$	${ }_{\substack{165 \\ 160}}^{10}$	$\begin{aligned} & 1720 \\ & 1620 \\ & 1620 \end{aligned}$	$\begin{aligned} & 177 \\ & 1705 \\ & \hline 165 \end{aligned}$	$\begin{aligned} & 174 \\ & 174 \\ & 167 \end{aligned}$	$\begin{aligned} & 77170 \\ & 1707 \\ & 167 \end{aligned}$	$\begin{aligned} & 165 \\ & 165 \\ & 364 \end{aligned}$		${ }_{\substack{144 \\ 148 \\ 148}}$	cis	${ }_{117}$
${ }_{209}$	179	170	163	${ }_{156}$	${ }_{153}$	${ }_{153}$	${ }_{155}^{150}$	${ }_{159}$	162	164	${ }_{162}$	157	${ }_{148}$	${ }_{136}^{133}$	${ }_{127}^{127}$
${ }_{211}^{210}$	$\underset{\substack{178 \\ 178}}{ }$	${ }_{1}^{168}$	$\underbrace{}_{\substack{159 \\ 1.78}}$	${ }_{149}^{159}$	$1 \begin{aligned} & 148 \\ & 148 \\ & 1\end{aligned}$		1149 142 1	${ }_{\substack{153 \\ 146}}$	${ }_{\substack{156 \\ 150}}$	$\xrightarrow{159}$	${ }_{1}^{155}$		148 148		$\underset{\substack{124 \\ 126}}{\substack{2 \\ \hline}}$
2112	(180	$\underset{\substack{167 \\ 169}}{160}$	${ }_{\substack{156 \\ 157}}^{15}$	146 146 146	$\begin{aligned} & 144 \\ & \hline 140 \\ & 140 \end{aligned}$	$\begin{aligned} & 142 \\ & \left.\begin{array}{l} 132 \\ 130 \end{array}\right) \end{aligned}$	$\begin{aligned} & 139 \\ & 348 \\ & 134 \end{aligned}$	$\begin{gathered} 146 \\ 1414 \\ 136 \end{gathered}$	$\begin{aligned} & 15050 \\ & 1405 \\ & 140 \end{aligned}$	$\begin{aligned} & 1545 \\ & 1414 \\ & 143 \end{aligned}$		$\begin{aligned} & 1530 \\ & 158 \\ & 148 \end{aligned}$	$\substack{146 \\ 144 \\ 144}_{\substack{\text { a }}}$	$\substack{\begin{subarray}{c}{138 \\ 135} }} \\{135} \end{subarray}$	
214	186	172	163	148	13.9	134	${ }_{1}^{132}$	${ }_{133}$	${ }_{137}$	141	144	145	143	137	128
215 216	${ }_{\substack{199 \\ 196}}$	${ }_{\substack{177 \\ 183}}$	$\substack{164 \\ 170}_{\substack{164}}$	${ }_{1}^{157}$	1142 148 1	136 139		(133							${ }_{\text {ce }}^{\substack{29 \\ 29}}$
2.27 218 18		$\xrightarrow{190} 1$	${ }_{1}^{187}$	${ }_{\substack{176 \\ 172}}^{\substack{19 \\ 1}}$,	(195	$\begin{aligned} & 130 \\ & 146 \\ & 146 \end{aligned}$	$\underset{\substack{134 \\ 143}}{\substack{143}}$	(1438	$\begin{aligned} & 138 \\ & 143 \\ & 143 \end{aligned}$	${ }_{145}^{142}$	${ }_{143}^{143}$	${ }_{1}^{141} 1$	$\substack{1.137 \\ 139}$	131
219	213	204	193	131	170	163	${ }_{154}^{146}$	${ }_{150} 14$	149	${ }_{148}$	${ }_{140}$	149	${ }_{146}^{14}$	142	${ }_{135}$
${ }^{292}$	$\substack{217 \\ 2020}^{21}$	210 215	${ }_{\substack{299 \\ 297}}$	$1 \begin{aligned} & 189 \\ & 197\end{aligned}$	${ }_{187}^{173}$	${ }_{\substack{169 \\ 178}}$	${ }_{\substack{162 \\ 171}}$	158 166 1		${ }_{\substack{155 \\ 152}}^{1}$				147	${ }_{4}^{39}$
			¢ 212	2274	$\begin{aligned} & 1875 \\ & \begin{array}{l} 1825 \end{array}, ~ \end{aligned}$	$\begin{gathered} 186 \\ 193 \\ 180 \end{gathered}$	$\begin{aligned} & 1780 \\ & \hline 187 \\ & 187 \end{aligned}$	${ }^{1185}$	$\xrightarrow[\substack{172 \\ 181}]{1}$	$\begin{gathered} 1972 \\ 1727 \\ 172 \end{gathered}$	${ }_{\substack{17 \\ 178 \\ 170}}$	$\begin{aligned} & 16169 \\ & 1880 \\ & 180 \end{aligned}$	${ }_{1}^{156}$	$\underset{\substack{191 \\ 171}}{171}$	${ }_{163}$
${ }^{29} 4$	219	220	217	212	205	${ }_{1} 199$	${ }^{194}$	190	188	187	187	187	185	181	174
${ }_{2}^{208}$	${ }_{210}^{215}$	${ }_{218}^{218}$	217 218	213 211	${ }_{288}^{238}$	${ }_{204}^{202}$	${ }_{201}^{198}$	${ }_{199}^{195}$							$\underbrace{\substack{\text { 2 }}}_{\substack{186 \\ 1 \% 8}}$
$\xrightarrow{329}$	202 194 104	cos	${ }_{203}^{209}$	$c208201$	206	$\begin{aligned} & 20,30 \\ & 2020 \\ & 2001 \end{aligned}$	$\begin{aligned} & 2010 \\ & 2010 \\ & 2001 \end{aligned}$	${ }_{201}^{201}$	-	220 213		$\begin{aligned} & 201 \\ & 2011 \\ & 2017 \end{aligned}$	213	213	${ }_{\substack{209 \\ 202}}$
229	184	192	195	197	197	196	197	199	293	218	915		${ }^{236}$	230	329
${ }_{231}^{230}$	${ }_{1}^{174}$	-	${ }_{187}^{187}$	18	${ }_{182}^{190}$	${ }_{1}^{190}$	${ }_{1}^{196}$	${ }_{\substack{195 \\ 190}}^{19}$	${ }^{290}$				${ }_{231}^{231}$	-333	${ }_{24}^{237}$
-	$\underset{\substack{153 \\ 142}}{ }$	${ }_{\substack{161 \\ 151}}$	$\begin{gathered} 1,67 \\ 1,62 \end{gathered}$	(1720	$\begin{aligned} & 1783 \\ & \hline 196 \\ & \hline 169 \end{aligned}$	$\begin{aligned} & 1785 \\ & \hline 167 \\ & \hline 167 \end{aligned}$	(178	${ }^{138}$	cos	(192	$\begin{aligned} & 214 \\ & 210 \\ & 204 \end{aligned}$	215	${ }^{207}$	$\underset{\substack{239 \\ 239}}{\text { 23, }}$	${ }_{24}$
234	131	140	${ }^{44}$	152	${ }^{155}$	158	161	167	174	184	196	209	221	23.2	240
$\underset{236}{238}$	${ }^{190}$	${ }^{130}$	${ }_{\substack{137 \\ 127}}^{18}$	ctis		148 139	${ }_{142}^{152}$		${ }_{\substack{165}}^{155}$	${ }_{\substack{175 \\ 163}}$		200			${ }^{2}$
	- $\begin{gathered}99 \\ 89 \\ 89\end{gathered}$	(109	${ }_{\substack{117 \\ 107}}^{102}$	12913		${ }^{139}$		${ }_{\substack{137 \\ 127}}^{1}$	(194	ck	${ }_{\substack{165 \\ 103}}^{163}$	178 166 168	cin	cis	
	$\stackrel{80}{71}$	${ }_{8}^{89} 8$	${ }_{88}^{97}$	(103	${ }_{107}^{107}$	110 100					ci10	(153	${ }_{\substack{166 \\ 153}}$	${ }_{165}^{173}$	${ }_{177}^{191}$

								忥可気宗家	可可忥可			－	\vdots
				穹気ご可	ございごき	岛気宓家里		๑気忥忥			気気可可家㤩	突＝	
						8꾸옹ํํㅡ			8®ロッコント			遒	
			勉勾気ご	8亏颔氙	－5ccox			$4)^{9} 9$	ご过㦴悉急	三可忥总氨		\％	
				¢x氏ㄸ．		9985	siscis cis	saxicis		或気三可品		E－	
				cictacosi	닝359		4．5995		怘気忒忥馬			灾こ	
		可苞可呺き		동표의	옹ㅇㅇㅇㅇㅇㅢ	cresemem						\％	
			※が心y	89898	889	Sis cisa	8cactici		気気忥忥品			${ }_{2}{ }^{\text {A2 }}$	
					gysucy	8．es．3ㄹ！						a	
		ざごぎき	9 coxilas		8．8989				코르ㅇㅡㅡ․			$\underline{2}$	
				Qegseut	cy	コンパ号き			気武可亏気			愙	
		匂句す気洼	メご心気		¢9959	人xが号気					言気気気気	右=	
			인웅오옹		crasez							${ }_{20}^{60}$	
			깅후ํํㅜ％		¢988：	禺可こ気㐓			黾気気気気互			岩	
式忥氙或称		⿹ㅑㅇㅡㅢㅒํ			댄옹어으	品気気志可		可気高玉或	질ํㅗํํ̇	둘훙훙			
		言呺枵：	9950w			こご気忥			気忥忥忥	可気気気			

\therefore dd 19.6 to Arg. XII. when $224^{4} .7$ is subtracted from Arg. I.

		Perturbations of the Longilude by Jupiter. Horizontal Argument $=1$. onstant added $2^{\prime \prime} .35$. P'eriod of Argument I.													
$\begin{aligned} & \text { Arg. } \\ & \text { XIII. } \end{aligned}$	${ }^{\text {d }}$	${ }_{8}^{8}$	$\stackrel{4}{16}$	${ }_{2}^{d}$	\mathbf{B}^{d}	${ }_{40}^{d}$	48	$\stackrel{d}{56}$	61	${ }_{y}^{d}$	${ }_{80}^{d}$	${ }_{8}^{\mathrm{d}} 8$	$\stackrel{d}{96}$	$\stackrel{d}{101}$	119
0	205	209	216	226	237	248	259	268	235	278	230	279	2%	271	263
1	185	184	188	194	204	211	296	236	245	253	257	$25!$	2.8	256	25.4
3	169	164	163	166	173	102	192	204	215	224	231	2.37	239	240	238
3	158	147	1.12	111	144	151	160	171	183	194	204	$\stackrel{212}{12}$	218	221	$2 \% 2$
4	150	136	$1 \div 6$	121	120	193	130	140	1.51	163	175	186	195	201	204
5	145	108	115	105	100	100	104	111	121	133	146	155	1.0	179	18.5
6	143	125	108	95	86	82	8:	86	94	104	117	$1: 31$	144	156	161
7	143	123	105	89	77	63	6.1	65	70	79	90)	10.1	118	$13:$	143
8	143	194	105	87	72	61	53	50	52	57	67	79	93	108	121
9	143	126	108	89	72	58	47	40	38	40	47	58	71	85	100
10	142	123	111	93	75	59	46	36	30	29	32	40	51	65	79
11	140	129	115	99	81	65	$4!$	37	28	23	23	2\%	36	47	61
12	136	129	119	10.5	89	73	57	42	31	23	1!)	20	25	34	45
13	1310	123	121	111	98	83	67	59	38	28	21	18	19	25	34
14	121	125	122	116	106	94	79	6.1	50	37	$\underline{37}$	21	19	21	27
15	116	123	129	120	114	105	99	78	64	50	38	29	24	22	24
16	109	115	120	122	120	115	106	94	80	66	53	42	34	28	27
17	102	110	117	123	125	124	119	109	98	85	71	58	48	40	35
18	96	105	114	192	129	131	130	124	116	104	91	73	65	55	47
19	92	101	111	122	131	137	140	138	133	12.1	112	99	85	73	63
20	91	99	107	121	132	142	149	151	149	142	133	121	108	91	82
21	92	99	108	120)	13:3	146	156	161	163	160	$15: 3$	143	131	117	104
22	95	101	109	121	135	149	161	170	176	177	173	16.5	154	141	123
23	100	105	112	$12!3$	136	$1: 1$	166	178	18%	$1!1$	190	186	177	16	172
24	108	111	118	127	139	154	170	184	196	204	206	205	199	189	177
2.)	117	120	125	133	144	158	1\%4	190	203	214	220	299	219	211	201
26	128	130	134	141	150	16.3	178	194	210	223	232	237	237	238	294
27	139	14:	145	151	159	170	184	199	215	230	2.11	2919	259	251	24.5
23	151	155	158	16.3	16.)	178	190	205	220	236	349	260	266	267	264
23	164	168	171	175	180	188	193	211	926	241	255	268	9\%7	291	281
30	177	181	185	189	194	199	207	218	231	246	261	974	285	292	296
31	190	196	200	204	203	21\%	218	297	238	251	265	279	291	301	307
32	20.4	210	215	$21!$	2022	220	230	237	245	256	269	283	296	307	316
33	219	2 2 1	299	234	237	210	243	248	204	263	273	286	299	311	$3: 2$
3.1	235	239	214	249	259	255	2.7	260	264	270	278	289	301	314	3326
35	2.1	2.54	259	263	267	269)	271	273	275	278	284	292	303	315	327 "
36	26	$2 \% 0$	274	278	281	234	286	286	237	288	291	297	305	315	$3: 7$
37	287	238	$\stackrel{39}{3}$	292	296	298	300	300	299	299	299	302	307	\$16	396
38	306	304	305	306	309	311	313	313	\$1	310	308	304	311	316	39.5.
33	326	322	321	321	32\%	324	395	325	324	321	318	316	316	318	324
40	346	341	3.37	395	335	336	337	337	336	333	328	324	321	321	32.1
41	366	3.5	354	350	348	347	348	348	346	343	339	3:33	329	3\%	325
42	$3 \geq 6$	378	370	36.5	361	338	358	3 3\%	356	35%	343	343	336	331	327
43	405	396	387	379	373	363	367	366	364	362	325	351	344	337	331
44	492	413	403	394	$3 \div 6$	380	375	373	371	369	365	359	352	344	336
45	436	428	418	408	398	390	383	330	376	$3{ }^{38}$	371	366	3.9	3.1	341
46	443	440	431	420	409	39%	391	384	381	378	375	371	36.5	357	347
47	454	4.0	441	$4: 31$	419	408	398	390	344	381	378	371	369	36	33.3
43	457	453	449	$43!9$	423	41.5	404	39.4	:387	382	378	37.5	371	365	3,\%
49	455	456	$45: 2$	4.14	433	421	409	398	388	38.2	378	374	371	367	369
50	448	409	451	446	436	425	412	400	389	351	376	3\%2	369	366	361
51	436	4.13	44.5	443	4:5	426	$41: 1$	401	359	330	373	368	365	36:3	3-!
59	419	429	$4: 34$	434	430	42.3	412	400	393	377	369	363	360	358	3\%
53	397	410	418	421	421	416	407	$3!16$	384	373	36.4	3.7	353	350	319
54	372	386	397	404	406	404	398	389	378	368	358	350	34.5	349	341
55	344	369	372	381	386	323	385	379	370	360	351	312	336	332	331
56	31.5	$3: 9$	31.3	354	$30^{\circ} \mathrm{F}$	367	368	36.5	3.9	3.0	3.11	3:31	326	32%	320
57	28.	298	3115	134	335	312	346	346	343	$3: 37$	330	$3 \cup 3$	315	310	307
58	2006	267	27.9		304	31.3	320	324	$3 \because 4$	321	316	310	304	298	29\%
59	9! ${ }^{2}$	$6: 37$	9.17	20,9	231	281	291	9.17	301	301	299	296	290	28.5	28.2
69	205	203	216	296	237	288	259	263	2%	275	250	$28!$	276	271	268

11 V

Perturbations of the Longitude by Saturn.
Ilorizontal Argument $=1$.
Constant added $0^{\prime \prime} .40$.
Period of Argument 1., $294^{\mathrm{d} .7}$.

$\stackrel{\text { Arcr. }}{\mathrm{XiV}}$	${ }_{0}^{\text {d }}$	$\begin{aligned} & \mathrm{d} \\ & 8 \end{aligned}$	16	84	$3 \underset{8}{\mathbf{2}}$	40	$\begin{array}{r} 1 \\ 48 \\ 48 \end{array}$	56^{d}	$6{ }^{4}$	${ }^{\mathrm{d}}$	80	88	96	$10 d^{d}$	$18{ }^{1}$
0	39	43	47	54	60	66	72	77	80	81	81	80	78	75	\%
1	37	39	43	48	5.1	61	67	79	77	79	80	80	79	76	74
2	36	36	39	43	48	54	61	67	72	76	78	79	78	77	i4
3	36	35	35	38	42	47	54	60	66	71	75	77	77	76	74
4	36	34	33	34	36	40	46	52	59	6.1	69	73	34	75	73
5	37	34	31	30	31	34	39	44	51	57	63	67	70	71	71
6	38	34	31	28	28	29	32	37	42	49	55	60	65	67	68
7	38	34	31	27	25	25	97	30	34	40	46	52	58	62	64
8	38	34	31	27	2.1	22	22	24	27	33	38	44	50	55	59
9	37	34	31	27	23	21	19	19	21	25	30	35	42	47	52
10	35	33	30	26	23	19	17	16	16	18	22	27	33	39	45
11	33	31	29	26	22	19	16	14	13	14	16	20	95	31	37
12	30	29	27	25	22	19	15	12	11	10	11	14	18	24	29
13	27	9	25	23	21	18	15	12	9	8	8	3	12	17	22
14	25	94	צ3	29	20	18	15	12	9	7	6	6	8	11	16
15	23	2:	21	20	19	17	15	12	9	7	5	4	5	7	11
16	23:3	21	20	19	18	16	15	13	10	8	5	4	3	4	7
17	24	21	19	18	17	16	15	13	11	8	6	4	3	3	4
18	26	23	20	19	17	16	15	13	12	10	7	5	4	3	3
19	29	26	23	20	19	17	16	15	13	11	9	7	5	4	3
20	33	30	26	23	21	19	18	16	15	13	11	9	7	5	1
21	38	34	31	27	25	22	20	19	17	16	14	12	10	8	6
23	42	39	36	32	29	96	24	22	$\because 0$	19	17	15	13	11	9
23	46	44	42	38	35	32	29	27	24	22	21	19	17	15	13
24	50	50	47	44	41	38	34	32	29	27	25	23	21	19	17
25	54	54	53	50	47	44	41	38	35	32	30	28	26	24	22
26	56	58	57	56	54	51	47	44	41	38	36	34	31	29	27
27	58	60	61	61	59	57	54	51	48	44	42	39	37	35	32
28	58	62	64	65	65	63	60	57	54	51	48	45	43	41	38
99	58	63	66	68	69	68	66	63	60	57	54	51	49	47	44
30	57	62	67	70	72	72	71	69	66	63	60	57	55	52	50
31	54	61	66	70	73	75	75	74	71	69	66	63	60	57	55
32	52	58	64	69	7.4	76	77	77	76	73	71	68	65	62	60
33	48	55	61	67	72	76	79	79	79	77	75	72	69	67	64
34	45	51	57	6.1	69	34	78	80	81	80	78	76	73	70	68
35	42	47	52	59	65	71	76	79	81	81	80	78	76	73	70
36	39	43	47	5.1	60	66	72	77	80	81	81	80	78	75	72

The perturbations are expressed in hundredths of a second of arc.

-	Perturbations of the Longitude by Saturn. Horizontal Argument $=\mathbf{I}$														
	Constant added $0^{\prime \prime} .40$.							Period of Argument XIV., 36 units.							
$\begin{aligned} & \text { Arg. } \\ & \text { XIV. } \end{aligned}$	$120^{\text {d }}$	$1.28{ }^{\text {d }}$	$13{ }^{\text {d }}$	$14{ }^{\text {d }}$	$15{ }^{\text {d }}$	$160^{\text {d }}$	$169^{\text {d }}$	176	$184{ }^{\text {d }}$	1.92	200^{d}	$2{ }^{\mathrm{d}}$	216^{d}	224	$23{ }^{\text {d }}$
0	70	68	66	63	61	59	56	52	48	45	41	38	37	37	40.
1	71	69	67	65	63	61	58	55	51	47	44	40	38	36	37
2	72	69	67	65	63	61	59	57	54	50	46	43	39	36	35
3	72	69	67	64	63	61	59	57	55	52	48	44	40	36	34
4	71	69	66	64	62	60	58	57	55	52	49	45	41	37	34
5	70	68	65	62	60	58	56	55	53	52	49	46	42	38	34
6	68	66	64	61	58	56	54	53	51	50	48	46	42	39	35
7	65	64	62	59	57	54	52	50	48	47	46	44	42	38	35
8	60	61	60	58	55	52	49	47	46	44	43	42	40	38	34
9	55	57	57	55	53	50	47	45	43	41	40	39	38	36	34
10	49	52	53	53	51	49	46	43	40	38	37	36	35	34	32
11	42	46	49	50	49	47	45	42	38	36	34	33	31	31	29
12	35	40	44	46	47	46	44	41	38	35	32	30	28	28	27
13	28	33	38	42	43	44	43	40	37	34	31	29	27	26	24
14	21	27	32	37	40	41	41	40	37	34	3	28	25	24	23
15	15	21	27	32	36	39	40	39	38	35	32	28	25	23	21
16	11	16	21	27	32	36	38	39	38	36	33	30	27	24	22
17	7	11	16	22	28	32	36	38	39	38	35	32	20	26	23
18	5	8	13	18	23	29	33	37	38	39	37	35	32	29	25
19	4	6	10	15	20	25	31	35	38	40	40	38	36	32	29
20	4	6	8	12	17	23	28	33	38	40	41	41	40	37	33
21	6	6	8	11	15	20	26	32	37	40	43	44	43	41	38
22	8	8	9	11	14	19	24	30	35	40	44	46	47	45	43
23	11	10	10	12	14	18	23	28	34	39	44	47	49	49	48
24	15	13	13	13	15	18	22	27	33	39	44	48	51	53	53
25	19	17	16	16	16	18	22	26	32	38	43	49	53	55	56
26	24	22	20	19	19	20	22	26	31	36	43	48	53	57	59
27	30	27	25	23	22	42	23	26	30	35	41	47	53	58	61
28	35	33	30	28	26	25	25	27	30	34	40	46	52	58	62
29	41	39	36	33	30	29	28	28	30	34	38	44	50	57	62
30	47	44	41	38	35	33	31	30	31	33	37	42	48	55	60
31	53	50	47	44	41	38	35	33	33	34	36	40	46	52	58
32	57	55	52	49	46	42	39	36	35	34	36	39	43	49	55
33	63	60	57	54	51	47	44	40	38	36	36	37	41	45	51
34	65	63	61	58	55	52	48	45	41	39	37	37	39	42	47
35	68	66	64	61	59^{*}	56	53	49	45	41	39	37	38	39	43
36	70	68	66	63	61	59	56	52	48	45	- 41	38	37	37	40

Add 0.8 to Arg. XIV. when $224^{\mathrm{d}} .7$ is subtracted from Arg. I.

TABLE XXVI.

Logarithm of the Elliptic Radius Vector for nad $=0$. Constant subtracted 0.0000257 . Period of Argument I. $2244^{4} .5008$											
Arg. 1.	0.0	9. ${ }^{\text {a }}$	0.2	0.8	0. 1	0.6	0.6	0.8	0.8	0.3	$\begin{aligned} & \text { Diff. } \\ & \text { for } 0^{\mathrm{d}} .1 . \end{aligned}$
${ }_{0}^{14}$	9.8563298	63298	63298	63299	63300	63301	63302	633304	63305	63307	+1
1	63310	68312	63315	63:318	6:3321	$63: 321$	683328	633332	63336	63341	4
2	$6: 3345$	63350	93355	63360	$6: 3366$	6337:	63378	63381	633391	63397	6
3	63404	63412	63419	63427	63135	63443	63451	63460	63169	63478	8
4	63487	63197	63507	63517	63527	63538	63518	63559	63571	63582	11
5	63594	63606	$6: 3618$	63630	$6: 3643$	63656	63669	6368:	63696	63710	13
6	63724	63738	6375:	63767	$6: 3782$	63797	63813	63828	63814	63860	15
7	63877	63893	63910	63927	63945	63962	63980	63998	64016	64035	18
8	64053	64072	64092	64111	64131	64150	64171	64191	64211	64232	20
9	64253	64274	64296	61317	64339	64362	64381	64407	64129	64452	22
10	64476	64499	64523	64547	64571	64595	64620	64645	64670	64695	25
11	64721	64747	64773	64799	64825	64852	64879	64906	64933	64961	27
12	64989	65017	65045	65073	65102	65131	65160	65189	65219	65249	29
13	65279	65309	65340	65370	65401	65432	65464	65495	65527	65559	31
14	65591	65024	65656	65689	65722	65756	65789	65823	65857	65891	33
15	65925	65960	65995	66030	66065	66100	66136	66172	66208	66244	36
16	66281	66318	66354	66392	66429	66467	66504	66542	66581	66619	38
17	66658	66697	66736	66775	66814	66854	66894	66934	66974	67015	40
18	67055	67096	67137	67179	67220	67262	67304	67346	67388	67431	42
19	67474	67517	67560	67603	67647	67691	$67 \% 34$	67779	67823	67868	44
20	67912	67957	68002	68048	68093	68139	68185	68231	68278	68324	46
21	68371	68418	68465	68512	68560	68609	68656	68704	68752	68800	48
22	68849	68898	68947	68996	69046	69095	69145	69195	69245	69296	50
23	69346	69397	69448	69499	69550	69602	69654	69706	69758	69810	52
24	69862	69915	69968	70021	70074	70127	70181	70234	70288	70342	53
25	70396	70451	70505	70560	70615	70670	70726	70781	70837	70893	55
26	70949	71005	71061	71118	71174	71231	71288	71345	\%1403	71460	57
27	71518	71576	71634	71692	71751	71809	71868	71927	71986	72045	59
28	72105	72164	7×224	72284	72344	72404	72464	72525	72586	72616	60
29	72707	72769	72830	72891	72953	73015	.73077	73139	73201	73864	62
30	73326	73389	73452	73515	73578	73612	73705	73769	73833	73897	63
31	73961	74025	74089	74154	74219	74284	74349	74414	74479	74544	65
32	74610	74676	74742	74808	74874	74940	75007	75073	75140	75207	66
33	75274	75341	75408	75176	75543	75611	75679	75747	75815	75883	68
34	75951	76020	76089	76157	76226	76295	76364	76434	76503	76573	69
35	76642	76712	76782	76852	76922	76993	77063	77131	77204	77275	70
36	77346	77417	77488	77560	77631	77703	77774	77846	77918	77990	72
37	78062	78134	78207	78279	78352	78425	78497	78570	78613	78716	73
38	78790	78863	78937	79010	79084	79158	79232	793306	79380	79.454	74
39	79528	79603	79677	79752	$798: 27$	79902	79977	80052	80127	80:02	75
40	80277	80352	80428	80504	80580	80656	80732	80808	80884	80960	76
41	81036	81113	81189	81266	81343	81419	81496	81573	81650	81727	77
42	81805	81882	81959	82037	82114	82192	82270	82348	82425	82503	78
43	82582	82660	82738	82816	82895	82973	83052	83130	83209	$83: 88$	78
44	83366	83445	83524	83603	83682	83762	83841	83920	81000	84079	79
45	84159	84238	84318	84398	84477	84557	84637	84717	84797	84877	80
46	84958	85038	85118	85199	85279	85359	85110	85521	85601	85682	81
47	9.8585763	85844	85924	86005	86086	86167	86219	86330	86.111	86192	$+81$

re.	0.0	0.18	0.2	0.3	D. 1	${ }^{\text {a }}$. 5	0. ${ }^{\text {a }}$	0.7	a,s	Q. ${ }^{\text {a }}$	
$\begin{gathered} 96 \\ 96 \\ 96 \\ 98 \\ 99 \end{gathered}$		$\begin{aligned} & 19780 \\ & 201: 7 \\ & 20454 \\ & 20760 \end{aligned}$	$\begin{aligned} & 19815151 \\ & \hline 20156 \\ & 20.656 \\ & 202099 \end{aligned}$		$\begin{aligned} & 198969696 \end{aligned}$		$\begin{aligned} & 19956 \\ & 20294 \\ & 20610 \\ & 20905 \end{aligned}$				${ }_{\substack{35 \\ 38}}^{\substack{35}}$
$\begin{aligned} & \text { coo } \\ & \text { a } 101 \\ & 100 \\ & 103 \end{aligned}$		$\begin{aligned} & 21045 \\ & 21308 \\ & 21549 \\ & 21769 \end{aligned}$					$\begin{aligned} & 21179 \\ & 21431 \\ & 21664 \\ & 21687 \\ & 2187 \end{aligned}$	$\begin{aligned} & 21205 \\ & 21455 \\ & 21683 \\ & 21890 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 21231 \\ 21479 \\ 21795 \\ 21009 \end{array}$		
$\begin{aligned} & 100 \\ & \text { and } \\ & \text { 105 } \\ & 107 \end{aligned}$		$\begin{aligned} & \text { 21966 } \\ & \hline 291 \\ & \hline 201291 \\ & \hline 22424 \end{aligned}$		$\begin{aligned} & 290030 \\ & \hline 203 \end{aligned}$					 2.2:38		13
$\begin{aligned} & 108 \\ & 109 \\ & 110 \\ & 1110 \end{aligned}$				$\begin{aligned} & \text { 29851 } 295120 \end{aligned}$							9 9 4 +2
$\begin{aligned} & 112 \\ & 111 \\ & 114 \\ & 115 \end{aligned}$			$\begin{aligned} & \text { ancric } \\ & \hline 2 \end{aligned}$			$\begin{aligned} & 2.277 \\ & \hline 2 y y \end{aligned}$	$\begin{aligned} & 29737 \\ & \hline 297 \\ & \hline 2250 \end{aligned}$				${ }_{-0}^{0}$
$\begin{aligned} & 116 \\ & 117 \\ & 118 \\ & 119 \end{aligned}$							$\begin{aligned} & \text { ang 290 } \end{aligned}$			(e2053	- $\begin{gathered}12 \\ 14 \\ 16 \\ 16\end{gathered}$
$\begin{aligned} & 190 \\ & \text { an } \\ & 1921 \\ & 1223 \end{aligned}$	$\begin{aligned} & 22074 \\ & 221890 \end{aligned}$ $\begin{aligned} & 21683 \\ & 91155 \end{aligned}$ 21455	$\begin{aligned} & 22056 \\ & 21870 \\ & 21662 \\ & 21431 \end{aligned}$	$\begin{aligned} & 22039 \\ & 2180 \\ & 21639 \\ & 21499 \end{aligned}$			21981 21789 ${ }_{21333}$	$\begin{aligned} & 21966 \\ & 2179 \\ & 21519 \\ & 21308 \\ & 2108 \end{aligned}$		$\begin{aligned} & 21928 \\ & 21726 \\ & 21503 \\ & 21257 \end{aligned}$	$\begin{aligned} & 21909 \\ & 21705 \\ & 21479 \\ & 21231 \end{aligned}$	181
$\begin{aligned} & 124 \\ & \begin{array}{c} 125 \\ 126 \\ 127 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 21205 \\ & 20934 \\ & 20640 \\ & 20326 \end{aligned}$		$\begin{aligned} & 2153 \\ & \hline 2057 \\ & 2025979 \\ & 202026 \end{aligned}$		$\begin{aligned} & 21099 \\ & 20819 \\ & 20517 \\ & 20195 \end{aligned}$	$\begin{aligned} & 91072 \\ & 2079 \\ & 20756 \\ & 20161 \end{aligned}$	$\begin{aligned} & 21015 \\ & 20760 \\ & 20455 \\ & 20128 \end{aligned}$	$\begin{aligned} & 21017 \\ & 20731 \\ & 204 \because 3 \\ & 20094 \end{aligned}$	$\begin{aligned} & 20990 \\ & 20701 \\ & 20391 \\ & 20060 \end{aligned}$		¢
$\begin{gathered} 128 \\ \begin{array}{c} 129 \\ 139 \\ 131 \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 19999559 \\ & 199555 \\ & 188662 \end{aligned}$		$\begin{aligned} & 19991 \\ & \hline 1961 \\ & \hline 196181 \\ & 18780 \end{aligned}$	$\begin{aligned} & 19886 \\ & \hline 1984 \\ & \hline 194141 \\ & 187393 \end{aligned}$		$\begin{aligned} & 19816 \\ & 1919 \\ & 19063 \\ & 18656 \end{aligned}$			$\begin{aligned} & 19508 \\ & 199393 \\ & 199593 \\ & 18530 \end{aligned}$		36 88 40 42
$\begin{aligned} & 1323 \\ & \left.\begin{array}{l} 133 \\ 134 \\ 135 \end{array}\right) \end{aligned}$	18145 18009 17554 17079	$\begin{aligned} & 18402 \\ & 17964 \\ & 17507 \\ & 17031 \end{aligned}$	$\begin{aligned} & 1839999 \\ & 17740 \\ & 16968 \end{aligned}$	$\begin{array}{ll} 1890 \end{array}$		$\begin{gathered} 182304 \\ 177894 \\ 179395 \\ 168330 \end{gathered}$		$\begin{aligned} & 18192 \\ & 17929 \\ & 17292 \\ & 16763 \end{aligned}$	$\begin{aligned} & 18098 \\ & \hline 1796 \\ & 177176 \\ & \hline 1686 \end{aligned}$	$\begin{gathered} 18051 \\ 18 x a n 0 \end{gathered}$ $\begin{aligned} & 17600 \\ & 17728 \end{aligned}$	44 46 47 49
$\begin{aligned} & 136 \\ & \begin{array}{l} 137 \\ 138 \\ 139 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 16586 \\ & \hline \end{aligned}$		$\begin{gathered} 161185 \\ \hline 1571 \\ 157888 \\ 14888 \end{gathered}$		$\begin{aligned} & 16884 \\ & \hline 15959 \\ & 159595 \\ & 14976 \end{aligned}$			16330 $\underset{\substack{15706 \\ 15165}}{151}$ 14607		$\begin{aligned} & 16127 \\ & \hline 1600 \\ & \hline 15055 \\ & 14493 \end{aligned}$	51 53 55 56 6
				$\begin{aligned} & 12964979 \\ & 13977 \\ & 12974 \end{aligned}$	$\begin{aligned} & \substack{14206 \\ 1390619 \\ 129016 \\ 123998} \end{aligned}$			$\begin{aligned} & 14031 \\ & 18440 \\ & 12833 \\ & 12210 \end{aligned}$	$\begin{aligned} & \substack{13973 \\ 132307 \\ 1227147} \\ & 127 \end{aligned}$	$\begin{aligned} & 13994 \\ & \begin{array}{l} 1320 \\ 12209 \\ 12003 \end{array} \\ & \hline 1 \end{aligned}$	58 60 8

Lagarithm of the Elliptic Radius Vector for esa $=0$. Constanl subtracted 0.00002:57. P'erind of Argment 1 . 2040.500 s .											
Arg. 1.	0.0	0.1	0.2	0.13	0.1	0. ${ }^{18}$	0.fis	0.7	0.4	0.9	$\begin{aligned} & \text { Diff. } \\ & \text { for } 0 \mathrm{~d} .1 . \end{aligned}$
111^{11}	9.861:030	11956	1180:3	11829	11765	11701	11636	11572	11.507	11143	-64
145	11:388	11313	11218	1118:	11117	110.51	10986	109:0	104.51	10788	(66
1.16	10721	1065\%	10588	10.52:	1015\%	10:3s\%	10321	10251	10186	10119	(i)
117	100.1	0998:3	09916	09318	09779	09711	09613	09531	09505	091337	68
119	03369	$09: 99$	00229	09160	09091	090:1	05951	0485:	0881:	08711	70
119	08671	05601	085i31	08160	08354	0x318	0x:14	08176	0810.3	080:31	71
150	07963	078.)	07819	07718	07676	07601	075i3:	07159	07387	07315	7:
151	07:	07169	07097	07021	069.51	065%	06801	06731	$0665 \overline{8}$		73
$15:$	06.511	06133	06366	$06: 89$	0621a	09141	05066	0.9092	0.917	0.58 4.3	71
153	0.768	0.693	0.5619	05.511	0.168	0.2393	05318	0.0: $1: 3$	0.5167	0.091	\%.)
151	05016	01910	01861	01isa	01712	016336	01.960	01181	01107	013331	76
155	$01: 551$	01177	01101	010:3	03917	03870	037933	03715	036:39	03561	77
156	03183	03106	033:3	03251	03173	03095	03017	02:933	02861	02783	78
157	$0: 701$	020 68	02514	02169	02390	02312	0.2e:33	022151	02075	01997	79
158	01918	01834	01759	$016 \bigcirc 0$	01601	015:1	01112	01866	01283	01803	7)
159	01121	01014	00961	$00<81$	00801	00721	00811	00561	00181	00103	80
160	9.8600323	00213	0016:	0008:	00001	:09921	99810	99759	99678	99598	81
161	9.85.j\%\%17	99136	99355	99:71	9919:3	99111	990:30	98919	988 (i8	98786	81
162	9870.5	98601	98512	98161	98379	98:97	94:16	98131	98052	97971	8
163	97889	97807	97725	97613	97561	97479	97397	97315	9723:3	97151	$8:$
16.1	97008	96986	96901	96822	96739	96657	96575	96199	96110	96327	82
165	$96: 15$	9616:	96080	95997	9.914	95s:32	95749	95666	95.581	95501	$8: 3$
166	95118	95335	95 ± 53	95170	95087	95001	91921	91839	94756	91673	83
167	91590	94507	914:1	91311	91258	94175	91092	91009	93920	9:38:13	83
168	93760	93677°	93594	93510	93127	93314	93261	93178	93095	93012	83
169	92929	92816	92763	92679	92596	92513	92130	9:3317	92:261	92181	83
170	92098	92015	91932	91818	91765	9168:	91599	91516	91433	91350	$8: 1$
171	91267	91181	91101	91018	90935	90852	90769	90686	90603	$905: 1$	83
17:	90138	9035\%	90272	90189	90106	90021	899.11	898:5	89775	8969:3	$8: 3$
173	89610	895:7	89445	8936:	89:30	89197	89115	8903:	88950	88967	$8: 3$
17.4	88785	88702	886:0	88.338	88.156	88:373	$88: 91$	88209	88127	88015	$8:$
175	87963	87881	87798	87717	87635	87:53	87.171	87389	87308	87×26	82
176	87141	87063	86981	86900	86818	86737	86655	86571	86193	86112	81
177	86330	$86 \div 19$	86168	86087	86006	85925	8581.1	$8: 763$	855683	85602	81
178	85521	85141	85360	85280	85199	85119	85039	81959	81878	81798	80
179	84718	81638	81558	81178	81399	81319	$81: 33$	81159	81080	81000	80
180	83921	83812	$8376{ }^{2}$	83683	83601	83.25	83416	833637	83288	8:3 10	79
181	83131	83052	$8: 971$	89895	82817	82739	82661	82:88:	82501	82126	78
182	82318	82271	8:193	82115	82038	81960	81883	81806	81798	81651	77
183	$815 \% 4$	81497	81421	8134.4	81267	81190	81114	81038	80961	80885	77
184	80809	80733	80657	80581	80505	801:30	803.51	80278	80203	80128	76
185	$800 \overline{5} 3$	79978	79903	79828	79753	79678	79601	79509	7915.5	79381	75
186	79307	79233	79159	79085	79011	789:38	78861	78791	75717	78611	71
187	78571	78198	78126	78353	78280	78008	78135	78053	77991	77919	72
188	77817	77775	77701	77632	77561	77189	77.118	77317	77276	77205	71
189	77135	770G1	76991	76923	7685.3	76783	76713	76613	7 76.7.1	76.501	70
190	76435	76363	76296	$763: 27$	76158	76090	76021	7595	75881	75816	69
19.1	9.8575748	75680	75612	75514	75177	75109	7534	7027\%	75 ± 08	7514	-67

Logarithm of the Elliptic Rudius Vector for $\mathbf{5}$ n $=0$. Constant subtracted 0.0000257 . Period of Argument I. 224 d .7008.											
Arg. I.	0. ${ }^{1}$. 0	${ }^{\text {d }}$. 1	0.2	0.3	Q. 1	0.5	${ }^{\text {d }}$ d 6	0.8	${ }^{\text {d }}$ d	0.9	$\begin{aligned} & \text { Diff. } \\ & \text { for } 0^{\mathrm{d}} .1 . \end{aligned}$
192	9.8575074	75008	74941	74875	74809	74743	' 71677	74611	74545	74480	-66
193	74415	74350	74:85	742:0	74155	74090	740:6	73962	73898	73831	64
191	73770	73706	73643	73579	73516	73453	73390	73327	73265	7320:	63
195	73140	73078	73016	7:951	72893	72831	72770	72709	72648	72587	61
196	70.526	72465	72105	72345	72285	72225	72165	72106	7:046	71987	60
197	71928	71869	71810	7175\%	71693	71635	71577	71519	71462	71404	58
198	71347	71289	71232	71175	71119	71062	71006	70950	70894	70838	56
199	7078:	70727	70671	70616	70561	70507	70152	70398	70343	70:89	55
200	70236	70182	70128	70075	70022	69969	69916	69863	69811	69759	53
201	69707	69655	69603	69552	69500	69149	69398	69317	69:397	69246	51
202	69196	69146	69096	69047	69899	68918	68899	68850	68801	68753	49
203	68705	68657	68509	68561	68514	68166	68119	683\%	68326	68:279	47
204	68233	68186	68140	68095	68049	68004	67959	67914	67869	67824	45
205	67780	67736	67692	67618	67605	67561	67518	67475	6743:2	67390	43
206	67317	67305	67263	672:2	67180	67139	67098	67057	67016	66975	41
207	66935	66895	66855	66815	66776	66737	66698	66659	66620	6658:2	39
208	66511	65506	66468	66130	66393	66350	66319	66282	66246	66209	37
209	66173	66137	66102	66066	66031	65996	65961	65927	65892	65858	35
210	658:4	65790	65757	65711	65690	65658	65625	6559:	65560	65528	33
211	65496	65465	65434	65403	65372	65341	65310	65280	65250	65220	31
212	65191	65162	65133	65101	65075	65016	65018	61990	61962	61935	28
213	61907	64880	64853	648:7	64800	64774	64748	61722	61697	64672	26
214	64646	64622	61597	64573	64548	64524	64501	64477	64454	64431	24
215	64408	64385	61363	64311	61319	64297	61276	$64: 55$	64234	64213	22
216	61192	64.172	64152	64132	61112	64093	64074	64055	64036	64018	19
217	63999	63981	63964	63946	63929	63912	63895	63878	63862	63816	17
218	63830	63814	63799	63781	63769	63754	63739	63725	63711	63697	15
219	63681	63670	63657	63611	63632	63619	63607	63595	63584	63572	12
220	63561	63550	63539	63528	63518	63508	63498	63489	63179	63170	10
221	63161	63453	63414	63436	63428	63420	63413	63406	63399	6339:2	8
222	63386	63379	63373	63367	63362	63357	63351	63317	63312	63338	5
223	63333	63330	63326	6332:	63319	63316	63314	63311	63309	63307	3
224	9.8563305	63303	63302	63301	63300	63300	63:99	63:299	63299	63300	-0

TABLE KXVH．

												Pert．of Log．r． Fact．to be $\times\left(\begin{array}{c}\mathbf{m 1 0 0}\end{array}\right)^{2}$	
Arg． 1	Factor．	log．fac．	Arg． 1.	Factor．	\log ．fise．	Arg． 1.	Factor．	\log ．fiue．	Arg．I．	Fuctor．	Iog．fac．	Arg． 1.	Factor．
1	＋13．4．	1．16－4	（i）	－ 1.61	n 1．： 0 \％	1：1	－12．14	21．113：	1－1	＋1．06		0	－2．1
1	13．45	1.12×6	（ii．	1.97	0．2゙5゙5	121	12．10	1．1115\％	1－1	＋1．11	1）（il4！）	4	2.1
$\stackrel{2}{2}$	1343	1.1231	69	9.34	0．31；\％	129	1：201	1．10\％	$1 \div$	1.7	10．1204	8	2.0
3	13.10	1．1283	6.1	2.61	0.435%	123	1：こ1	1．14．）	1－3	5.12	0.8093	12	2.0
4	＋13．36	1.1 ± 69	61	－ 3.07	ก 0.1×51	12.1	$-10.5!$	n1．10rs	131	$+5.47$	$0.73 \% 7$	16	-1.9
5	13．3：	1.124	（6）	3.13	0.5354	12.5	10.13	1．0：61	1－5	5.81	0.7612	2）	1.8
（i）	13．26	$1.12 \% 1$	66	3.79	$0.57 \div 1$	129	12．35）	1.19%	1－6	6.15	$0.75+3$	21	1.6
7	13.19	1.123	6	1.14	0.618%	$1: 7$	12．21	$10 \leq 6{ }^{\circ}$	187	6.42	0.8113	23	1.5
¢	＋13．10	1.1174	63	-449	n0．6．01	123	-13.06	21．0×13	128	$+6.81$	0．8：133	34	－1．3
9	13．01	1.1144	（\％）	4.81	0．6－47	129	11.90	1．07．57	$1 \times!$	7.13	0．e－5：34	36	1.1
11	12．91	1.1110	70	5.13	0.714 .1	1：31	11.71	1 UGiMs	190	74%	0.8823	40	0.9
11	12.50	1．1072	71	5.50	0．7．11！	131	11.66	$1.06: 30$	191	7.85	0.8932	41	0.7
12	$+12.63$	1.1030	72	－ 5.85	ทา．\％6\％．	139	11.38	41.0561	192	$+8.07$	0.9070	43	－0．5
13	12.51	1.0984	71	6.18	ก．7：リ！	1：33	11.119	1．0．14\％	1193	8．11\％	0.91293	5%	－0．2
14	12.40	1.09135	74	6.51	0.4134	1：31	10.113	1．041）8	19.4	8.67	$0.137!1$	56	0.0
15	19．25	1.0880	75	6.83	$0.834 *$	135	10.77	$1.03 \% 4$	195	8.95	$0.90 \cup 0$	60	＋0．2
16	＋12．08	1.0322	76	-7.14	n0．853\％	136	－10．56	n1．0335	196	$+9.23$	0.96 .53	64	$+0.5$
17	11.11	1.0760	77	7．4．）	0．87： 0	137	10.33	1.0141	197	9.51	0.9750	63	0.7
18	11.73	1.0619	78	7．7．5	0.48 .13	133	10.10	1.0041	193	0.77	0.9899	72	0.9
19	11.54	1．06：2	79	8.05	0.9056	139	9.85	$0.99 \% 36$	199	10.03	1.0013	76	1.1
${ }_{2}$	＋11．34	1.05 .15	80	－ 8.33	$n 0.9279$	140	-9.69	n0．942\％	200	＋10．23	1.0119	80	＋1．3
21	11.13	1.046 .3	81	8.69	0.931 .4	141	9．3．）	0.19717	201	10.52	1.0240	81	1.5
929	10.91	$1.037!$	8.	$8.8!9$	0.9491	142	9.05	0．9583	20：	10．\％	1.0315°	83	1.6
23	10.68	1.0237	83	11.16	$0.96 \div 1$	143	8.81	0.0451	903	10.98	1.0405	02	1.8
21	$+10.45$	1.0190	84	-9.43	n0．9543	144	－8．53	$n 0.9311$	20.1	＋11．19	1.0439	96	$+1.9$
2.5	10.23	1.0084	8.5	9.64	0.158 .9	145	8.25	0.916 .1	20.8	11.40	$1.056 ?$	100	$2.1)$
26	9.95	0.9979	86	0.93	0.9969	146	7.96	0.9008	$\because 06$	11.69	1.0611	104	2.0
27	9.69	0.9861	87	10.17	1．0072	147	7.66	0.8812	207	11.79	1.081 .1	108	2.1
33	＋ 9.43	0．974：3	88	－10．40	$n 1.0170$	143	－ 7.36	$n 0.8666$	278	＋11．96	$1.0 \% 79$	112	＋ 2.1
29	9.15	0.10614	89	10.62	1.056	119	7.0 .7	0.8480	24.9	12．13	1.02419	116	2.1
30	8.87	0.19178	91	10.84	1．033．19	150	6.73	0.8021	210	12．？	1.08 .17	120	2.1
11	8.58	0．933	91	11.05	1.0432	151	6.41	0.8069	211	12.4 .1	1.0950	121	2.0
32	＋ 8.23	0.918	94	－11．24	n1．0509	152	－ 6.08	n）． 8316	212	$+12.58$	1.0999	123	$+1.9$
$: 13$	7.15	$0.9) 51$	93	11.43	1.0532	1.73	5.75	0.7690	213	12.71	1.1043	132	1.8
3.1	7.67	0.85 .0	94	11.61	$1.0630)$	151	5.42	0．73139	91.1	12.8	1.1053	136	1.7
35	7.36	0.8663	95	11.79	1.0714	155	5.03	0.8059	215	12.94	1.112	1.10	1.5
36	＋ 7.04	0.8476	9	-11.95	$n 1.0774$	156	－ 4.73	n0．（i\％ 5.3	216	＋13．0．1	1.1153	141	$+1.3$
37	6.71	$0.8 \times 7{ }^{\text {a }}$	97	12.10	1.0833	137	4．33）	（1）．i．2．2	217	13.13	1．118：3	148	1.1
38	6.38	0.8051	15	12．25	11881	158	4.04	0.60 .99	213	13.21	1．120，	15：	0.9
39	6.05	0.7516	99	12.39	1.0930	159	3.68	0.5660	$211)$	13．28	1．12：31	156	0.7
10	$+5.71$	0.7565	100	-12.51	n1．0974	160	－ 3.32	n0．5215	2 ± 0	＋13．33	1.1249	160	$+0.5$
41	5.36	0.85196	101	12.63	1.1014	161	2.96	0.4716	291	1：1．3．4	1.126 .1	161	0.3
42	5.02	0.7004	102	19.74	1．10\％0	162	2.63	0.4146	229	13.41	1．1275	168	$+0.0$
43	4.66	0.6638	103	12.83	1.10 ± 3	163	2．93	0.3158	293	13．4．	1.1253	17%	－0．2
44	＋ 4.311	0.6341	104	－12．92	n1．1113	164	－ 1.86	$n 0.2707$	22.1	＋13．45	1．1247	176	－0．1
4.5	．1．95	0.5166	105	13.00	1．113！）	163	$1.4!)$	0.1746	23.3	1：3．43	1.1235	180	0.7
46	3.59	0.5350	106	13.07	1．1162	166	1.12	0.0271	246	13.41	1．128．7	184	0.9
47	3.22	0.5053	107	13.13	1.1182	167	0.75	9.876	$2: 57$	13．42	1.1279	188	1.1
48	＋ 2.86	0.4503	108	－13．17	n1．1198	163	－ 0.33	n9．55－6	243	＋13．30	1.129	102	－1．3
$4!$	2．4！	0.3961	10？	13.21	1.1210	169	－ 0.01	$n 7.7833$	939	13．3．	1.1506	196	1.5
50	2.19	0．826：	110	13.81	1.1660	170	$+0.37$	p9．n（0）	$2: 30$	13.30	1.1239	290	1.6
51	1.75	0.2430	111	1：1．26	1.1223	171	0.74	9.8704	9：31	13.91	1.1218	204	1.8
54	$+1.33$	0.1389	112	－1：3．47	n1．1623	1\％2	＋ 1.12	0.047%	234	＋13．17	1.11113	208	－1．9
63	1.00	0．0017	$11: 3$	11．27	1．11023	173	1.43	0.1726	$2: 3$	13.09	1．116．7	212	40
54	0.61	9．7923	114	113．26	1．15－1	17．1	1.86	0．26\％	23.4	12.99	1.1131	216	40
55	＋ 0.20	$p^{0} .40 \leq 2$	115	13.23	1.1217	175	2.23	0.3457	235	12．88	1.1093	223	2.1
56	－0．1：	n9．0719	116	－13．2）	n1．127	176	＋2．60	0.4151	236	＋12．77	1.1067	221	－2．1
57	0.119	9.6011	11%	13.16	1．11！ 17	177	2.97	0.172 .5	2：17	13．1）	1.1017	223	2.1
58	0．86	0.9363	118	1：1．11	1.1176	178	3.33	$0.5 \div 3$	2.56	12.51	1．10370	2，3\％	2.1
59	1．21	0.01917	119	13.05	1．11．29	$17!$	3.70	0 2igen	2319	12．36	$1.0311!$	$2 \cdot 36$	90
6）	$\bigcirc 1.61$	n0．9057	120	-12.98	n1．1132	18J	$+4.06$	0.6083	24%	＋12．20）	1：0c6：3	210	－1．9

Perturbations of Log. r, by the Earlh.
Constant added 15.94
Period of Argument V1., 583 d .92.

Arg. V1.	Equa.	Arg. V1.	Equa.	Arg. Vl.	Equa.	Arg. VI.	Equa.	Arg. V1.	Equa.	Arg. VI.	Equa.
(1)	1716	104^{4}	185!	208 ¢	5.50	318	28.50	$416^{\text {d }}$	45	$520^{\text {d }}$	2527
2	1718	106	17\%	210	614	314	2811	418	64	592	25\%4
4	1725	108	1729	212	$6 \leq 1$	316	2769	420	87	524	2518
6	1736	110	1662	214	\% 51	318	2709	422	11.1	5 ± 6	2509
8	1751	112	159)3	216	824	3:0	2653	494	145	598	2496
10	1769	114	1593	218	816	3×2	2594	426	179)	530	2480
12	1792	116	1452	220	972	$3: 24$	2531	428	216	533	2460
14	1818	113	1381	2	1049	320	2466	430	2.8	534	2438
16	1846	120	1310	2.21	1123	328	2:307	432	302	$5 \cdot 36$	2413
18	1578	192	1933	2926	1209	330	2-326	434	350	538	2385
20	1912	124	1166	$\underline{29}$	1210	332	2253	436	401	540	2356
2	194	126	1095	230	1372	334	2178	438	454	542	2323
24	1985	198	102.1	$2: 12$	1455	336	2101	440	510	54.1	223:
26	$20: 4$	130	95.5	234	15.38	338	$2(1) 2$	442	569	5.16	283
28	2061	132	886	236	1621	340	1942	444	$62 ?$	548	2216
30	2103	134	818	238	1704	312	1861	446	692	550	2177
32	2143	136	752	240	1787	344	1780	448	757	5.5	2138
34	$218: 1$	138	657	24.	$1-69$	346	$16!97$	450	823	5.4	2098
36	2×2	140	624	244	1950	348	1614	45.2	891	556	2059
:38	2259	142	563	246	2030	350	1531	454	960	558	2015
40	(3).91	114	505	248	2108	352	1448	456	1099	560	1981
42	$\underline{3} 39$	146	449	250	2185	35.1	1365	458	1100	56	1944
14	2361	148	395	252	2260	3.6	1283	4619	1171	564	1908
46	2391	150	345	254	2333	358	1202	46%	1243	566	1874
48	2418	15	297	256	2404	360	1123	464	1:115	568	1813
50	2443	154	253	258	24.2	362	1044	466	13 ± 6	570	1814
59	2465	156	212	260	$253{ }^{\circ}$	364	967	468	14.7	57.2	178!
54	2484	158	174	26.	2600	366	891	470	1528	574	1767
56	2500	160	140	264	2659	368	818	472	1508	576	1749
58	2513	162	109	266	2715	370	746	474	1666	578	1734
60	2522	164	83	269	2767	$37 \times$	677	476	1733	580	1784
62	20528	166	60	270	2815	374	610	478	1799	-502	1718
64	2531	168	41	272	2860	376	546	480	1863	584	1716
66	2530	170	47	274	2901	378	485	$48: 2$	$1!24$	586	1718
68	25\%)	172	17	276	2938	380	427	484	1984	588	1725
70	2517	174	11	278	20	351	372	486	2041	590	1737
72	2505	176	9	280	2999	334	321	488	2095	593	1752
74	$24!0$	178	12	282	:1023	386	273	490	2147	594	1780
76	2471	180	$1!$	$2 \triangleleft 4$	83043	388	229	49%	2196	596	1793
78	2449	182	31	286	3058	390	188	494	2242	598	1819
80	2493	184	46	288	3069	392	152	496	2985	600	1847
82	2393	186	66	290	$30 \% 6$	394	119	498	2324	601%	1879
84	$\because 2360$	188	91	402	3078	396	91	500	2361	604	1913
86	2323	190	1:20	294	$30 \% 5$	398	67	509	$23!3$	606	1950
88	2284	192	153	296	3068	400	47	504	2422	608	1987
90	2241	194	189	998	3057	402	32	506	2448	610	2026
92	2194	196	2:30	300	3041	404	20	508	2470	612	2066
:14	2145	198	275	302	3090	406	14	510	2489	614	2105
96	2093	200	393	304	2996	408	11	$51:$	2503	616	2145
18	2039	202	375	306	2967	410	13	514	2515	618	2185
100	1981	204	4:30	308	2934	412	90	516	2523	620	$2 \because 23$
102	19:2	206	488	310	2097	414	30	518	2527	64	2261
104	183!	208	550	312	2856	416	45	520	2527	69.1	2295

TABLE XXX. Perturbations of Log, r, by the Earth. Constant added 162. Period of Arg. VII. 243a.16.				TABLE XXXI. Perturbations of Log. r, by Jupiter. stant added 445. Poriod of Arg. 1X., $236^{3} .99$.					
Arg. VII.	Equa.	Arg. VII.	Equa.	Arg. IX.	Equa.	Arg. IX.	Equa.	Arg. IX.	Equa.
d 0 0 -4 8 12	171 154 137 121	128 138 136 140	180 197 213 228	$\begin{aligned} & \text { d } \\ & 0 \\ & 2 \\ & 4 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 585 \\ & 585 \\ & 586 \\ & 588 \end{aligned}$	80 80 82 84 86	321 295 269 244	160 162 164 166	363 389 414 438
16 20 24 28	105 90 75 61	144 148 152 156	243 257 270 282	$\begin{array}{r} 8 \\ 10 \\ 12 \\ 14 \end{array}$	$\begin{aligned} & 591 \\ & 594 \\ & 598 \\ & 603 \end{aligned}$	88 90 92 94	219 194 171 148	$\begin{aligned} & 168 \\ & 170 \\ & 172 \\ & 174 \end{aligned}$	$\begin{aligned} & 462 \\ & 484 \\ & 506 \\ & 526 \end{aligned}$
32 36 40 44	49 37 37 19	160 164 168 172	293 302 310 316	$\begin{aligned} & 16 \\ & 18 \\ & 20 \\ & 22 \end{aligned}$	608 613 618 623	96 98 100 102	127 106 88 71	176 178 180 182	545 563 579 593
48 52 56 60	12 6 2 0	176 180 184 188	320 323 324 324	$\begin{aligned} & 24 \\ & 26 \\ & 28 \\ & 30 \end{aligned}$	629 633 638 642	104 106 108 110	55 41 49 29 19	184 186 188 190	606 617 627 635
$\begin{aligned} & 64 \\ & 68 \\ & 72 \\ & 76 \end{aligned}$	0 1 4 4	192 196 200 204	321 317 311 304	$\begin{aligned} & 32 \\ & 34 \\ & 36 \\ & 38 \end{aligned}$	645 647 648 648	112 114 116 118	12 6 2 1	192 194 196 198	641 646 649 651
80 84 88 92	15 23 23 43	208 212 216 220	205 285 283 261	$\begin{aligned} & 40 \\ & 42 \\ & 44 \\ & 46 \end{aligned}$	647 644 640 635	120 122 124 126	1 4 9 16	200 202 204 206	651 651 649 646
96 100 104 108	56 69 83 98	224 224 238 238 236	247 232 216 200	$\begin{array}{r} 48 \\ 50 \\ 50 \\ 52 \\ 54 \end{array}$	$\begin{aligned} & 628 \\ & 619 \\ & 608 \\ & 596 \end{aligned}$	128 130 132 134	25 36 49 64	208 210 212 214	642 638 633 628
$\begin{aligned} & 112 \\ & 116 \\ & 120 \\ & 124 \end{aligned}$	$\begin{aligned} & 114 \\ & 130 \\ & 146 \\ & 163 \end{aligned}$	240 244 248 252	184 167 151 134	$\begin{aligned} & 56 \\ & 58 \\ & 60 \\ & 62 \end{aligned}$	$\begin{aligned} & 583 \\ & 567 \\ & 551 \\ & 532 \end{aligned}$	136 138 140 142	81 99 118 139	216 218 220 222	$\begin{aligned} & 623 \\ & 617 \\ & 612 \\ & 607 \end{aligned}$
66 492 146 185 226 597 68 470 148 209 228 593 70 447 150 234 230 590 72 423 152 259 232 $: 588$ 74 398 154 285 434 586 76 373 156 311 236 585 78 347 158 337 238 585 80 321 160 363 240 586									

The perturbations are in units of the eighth decimal place.

'1'he perturbations are in units of the cighth decmat prace.

The perturbations are in units of the eighth decimal plaee.

Perturbations of Log. r, by the Earth. Horizontal Argument $=\mathbf{I}$.															
Cinstant added 150. Period of Argument X1, 240 unit															
Arg. NI .	120	128	136	14.	$15 \stackrel{1}{4}$	160	16*	176	181'	$19 \stackrel{\text { d }}{2}$	200°	208	216	221	23
0	210	217	2	231	23.3	2:13	239	2:3	237	$2: 16$	236	239	214	252	269
2	2)	212	215	293	$2: 27$	9e9	2:10	(2)	927	326	298	2313	2:36	25	2.56
4	202	216	211	21.5	218	$2: 0$	$2 \geq 1$	219	217	216	216	219	42,	234	246
6	196	199	$20 \cdot$		209	210	210	299	206	20.1	29	209	211	290	215
\checkmark	1*:)	191	194	197	199	1919	199	196	193	190	188	190	194	213	25
	133	104	186	158	189	1-4	136	1-3	173	174	171	121	173	181	$1: 3$
12	179	131	180	181	189	1\%	171	169	169	150	150	143	149	156	166
14	178	$1: 7$	176	176	174	170	164	156	147	1:39	130	125	124	129	1:38
16	137	176	18.5	$17: 3$	1310	16.5	15%	148	1336	194	113	105	101	102	109
13	175	174	173	172	169	164	156	1.15	131	117	102	4	83	81	84
20	180	169	120	170	169	364	158	1.17	134	118	101	87	2	63	67
2	159)	16.	163	165	167	160	162	15.3	142	126	109	32	76	6.9	(6)
24	14.4	147	151	157	16:	16.	166	161	169	$1: 19$	12	10.5	87	72	62
9	123	1311	136	144	153	16)	16	16.	161	151	137	121	$10: 3$	$\stackrel{8}{81}$	78
2y	113	114	140	123	138	149	158	163	16.4	160	150	137	120	103	8
30	102	100	10.4	111	121	133	145	154	169	161	156	147	$1: 34$	119	104
: 2	: 8	级	! 11	96	104	115	129	1:39	149	15.1	15.5	150	14.3	130	118
:11	110	!	8.5	8.1	8	! 18	109	12	133	142	147	147	14.3	136	123
36	103	9.5	8.5	8!)	$7!$	84	193	104	116	127	135	1:192	14.10	1:178	$1: 11$
38	119	103	90	80	\%	76	82	91	102	114	123	130	13.1	135	1:11
4)	1:31	11.3	93	86	\%	\%	77	84	93	104	114	192	123	131	13:3
4	111	$1: 4$	103	94	84	is	33	82	8	136	117	116	123	$1: 7$	1:3)
44	146	139	117	103	\%	8.	82	81	89	96	10.4	119	118	123	1\%i
46	14:	137	$1: 4$	111	100	9	83	87	90	45	102	105	114	119	120
48	149	141	129	115	107	99	9:3	91	92	15	100	105	110	113	116
50	147	141	133	123	113	104	19	94	9	95	93	101	105	107	109
5	14.3	140	1313	125	116	103	101	97	9	93	96	03	101	102	103
54	136	135	131	12.	117	111	105	100	0	93	93	03	919	100	93
56	10.	127	125	122	117	112	108	10.7	103	103	103	103	102	101	93
3\%	112	115	116	136	113	111	110	109	109	110	111	111	111	108	104
60	96	101	10.5	107	108	108	110	112	115	114	121	123	123	120	11.5
62	81	87	92	96	99	102	107	119	119	145	131	135	136	135	129
61	70	75	80	84	89	94	100	108	117	127	136	144	148	149	145
66	66	20	73	76	79	84	91	100	111	123	133	146	150	159	158
6	73	72	72	73	\% 4	76	81	90	100	114	129	14:	155	163	166
70	89	85	81	7	74	73	85	81	90	103	118	133	148	161	165
72	114	107	99	91	84	78	76	\% 7	${ }_{83}^{83}$	93	107	123	140	150	${ }^{1675}$
74	144	134	123	312	101	92	84				101	115	139		
78	176 205	16. 105 105	153 183	140 180	126 156	114 142	103 120	96 118	93 111	109	112	114	131	144 145	1.9 159
78	205	195	183	18)	156	142	129	118	111	109	112	120	181		
	230	2\%	212	200	188	122	153	14.5	136	130	129	133	14	1.16	$1{ }^{122}$
82	2.50	244	237		$\stackrel{125}{0}$	202	188	174	163	15.4	150	150	15.5	161 173	170
84	266	${ }_{263}$	258	250	240	228	214	2001		178					
86 88	279 289	278	274 237	263 482	2200	24: 29	236 23	${ }_{238}^{238}$	208	197 212	189 202	1334	183	18.1 19.1	189 198
88	239	2 3	237	482	274	264	25%	238	2	212	202	59	19		
	293	99	295	291	235	275	263	2:0	236	221	213	205	201	200	203
32	293	297	29\%	296	291	233	972	259	245	238	$2 \cdot 1$	212	236	205	2.10
94	235	292	$2: 16$	2.17	29.1	297	298					-218		209 213	211 212
96	269	$\stackrel{279}{290}$	283 272	291	291	2483	230 279	270	461	24.5	${ }_{233}^{238}$	2203	216	215	212 213
93	246	260	272	280	23.4	233	289	271	201	245	23				
100	219	236	231	263	270	273	27\%	$2{ }^{6} 7$	250	243	239	223	290	215	212
102	139)	207	205	240	251	20,	259	257	2, 21	$2 \cdot 2$	23,	- 214	216	210	${ }_{127}^{297}$
104	160	178	197	214	227	${ }_{213}^{237}$	243 219	退		2931 214	$\stackrel{202}{207}$	(1914	2968		198
${ }_{108}^{106}$	133 109	19	149	159	37.	187	196	20	230	196	181)	182	175	170	169
110	89	101	116	133	149	162	173	189	183	174	173	166	15.5	155	153
112	63	\% 9	92	. 108	131	13:	1.51	16.	16.3	16:1	159)	15.3	147	142	1339
114	50	58	7.	84	101	117	131	14.	149	151	150	145	$1: 19$	13.1	130
116	39	39	49	62	\% 8	96	112	12	13.3	110	112	140	13.	140	20,
118	18	2	16	4	8	54 53	${ }_{71}$	88	103	11.	124	130	123	1:27	12\%
120	10	11	16	21	3										

TABLE XXXIV.

The perturbations are in units of the eighth decimal place.

\％\％\％	¢\％\％\％\％\＃¢ ¢	\％\％\％\％\％		あぁち ぶ		－¢ ¢ ar	－ω O－O	发	
\％	А灾会	A 0_{6}		びひひひ	－orerato	※ちろ ※ \％	\＄\％\％\％M M	朢	
©	合念			Esours	ขras $\cos _{\text {¢ }}$		¢ \％\％M \％	${ }_{80}$	
$\stackrel{*}{\text { A }}$	令	¢ ¢ ¢ \％\％\＆		大ras－ar		10 \％\％\％\％	\％\％\＃\％	$\underset{\sim}{\text { win }}$	
\pm＊	＊	\％	そこぢめの	Or - Oros ∞	あムちゃ \％	K $8 \pm \mathscr{\leftrightarrow}$	H．：		
＊せ	$\wedge \pm 4 \square_{4}^{\circ}$	¢ \％	むくッणメ	A oraso	二あ心込	\％\％w \％\％	\％	$\underset{心}{\underset{心}{心}}$	
ह		§ \％Ј ¢ ¢	$\infty \mathrm{O} \sim \mathrm{c}_{0}$	のッひた		¢゙¢ \％\％\％\％	\％\％今＊＊	$\hat{e}_{\hat{\theta}}$	
$\hat{*}$	¢9\％\＃\＃w		or ω co co or	メあむそ	\＆	¢			
$\pm \%$	¢	चちゃの－	10 co era		\＃\％¢ \％¢ ¢ \％	$\underset{¢}{4}$		$\stackrel{\rightharpoonup}{\alpha}^{\prime \prime}$	
\％\％		Wosercoso	10 coera	¢゙ひ \＆	W¢ \％¢ \％M	$\ddagger \sharp 4 \%$ \％\％	$\Delta \# \#$ ¢	${ }^{\text {a }}$	
¢ \％	¢88 ¢ \％＝	$\sim \Delta 10 \sim+$	cor＊		¢	\＃\％\％		${ }_{8=}^{5}$	
\％\％		$\omega ー$ ーレ	の๐ムそ（		¢ֻ¢ ¢ M M M M	\％\％\％\％\％	台台 80	${ }_{80}^{08}$	
＊	¢500	－o－wo	こち禹む	¢్\％\％M \％\％\％\％	\＆¢ ¢ M M M M		$\mathscr{6}$	${ }_{80}{ }^{10}$	
\＆	むouso	－－の の	元ちさ \％			\％\％\％	¢ \％¢ M \＆	$\stackrel{\sim}{8}$	
こ ¢	$\infty-100$	－${ }^{\text {－}}$－	\％	¢్¢ M M M M	¢ M M ¢ ¢ ¢	¢్ర M\％¢ ¢ ¢ ¢ M M		皆	
उ－	－－00－	－いた ¢－	\％ 84				め芯先こた	帯芯	

When $224^{\mathrm{d}} .7$ is subtracted from Arg．I．add 0.8 to Arg．XIV．

The perturbations are expressed in hundredtlis of a second of arc.

ジスニニニ゙	흥ㅎㅇ웅흉		※®\＃\＃	중⼷ㅚ서앙	8989ㅇ¢ㅇㅇㅇ	cricgicicy		¢ M\％Mg	20\％20	あぁこむす	$\propto の-$＊	$\stackrel{\square}{4}$	
		¢¢\％${ }^{\text {cha }}$			2\％xㅈํ		व1x®88		合岛耍：	\％9\％¢ \＃	¢¢8：\％gy	冬	
※゙ぎさ		8ida	옹어ㅇㅓㅓㄱㅇㅇ융			＊9¢ㅒํํ	2990嗉	81，궁여의			ミゴが気	枹	
¢゙心qix			농덩ㅇㅇㅇ	و¢ \＃\＃cis	\＆\％9G4	¢	¢80	8거읭¢		¢ ± 9 gicic		${ }_{\text {H }}^{\text {\％}}$	
		ロロツ9\％		¢゙心ニヅけ	989\％		¢					易	
	のจัコロ์	99\％\％		G出きジ心	\＆\％＊＊9\％		¢゙\％	Ş¢			ㅂax¢岳里	気	
	ปココセ区\％	8：8\％	\％289듸	产今		※め\％ぎき	¢09xay	덩댕＃\％			구见®․․	©	
	정yyy	8\％888\％	깅여의		¢ ¢ ¢ \％\％	888\％	¢ cix 긍	¢	\％0\％\％＊	¢9yyy		迢	
＊59920	298\％					888	¢¢¢ ¢ \％	今尔发呺き		둔이외ํ		ลै	
¢9¢5ํx	\％	¢\％\％	88.9	会出合身免		¢흉¢ㅇㅇ	※さ8icit	4 \％\％\％			떠워허그우		
	¢，		gight		820 \％\％		ชैश⿹勹凶					皆	
	¢\％	¢ ¢ 직ㅇㅇ	さも合出か	4885898	びさ心がす	－¢\％\％ロコ		V2x			벌ㅋํ의	$\stackrel{18}{6}$ ．	
8240붕		ロン89\％	荗出念出合		$\propto \times$	쟤y ${ }^{\text {c }}$		\％ 2 Ux	4\％9\％\％		ํ89¢\％	\％	
	8き\％8゙	789\％空合	会出出出瑞	99ymud	¢8\％\％		¢\＃\＃cex	ざきで心	앵ํㅇํ	뜨옹ㅊㄹㅢ	고요여	$\stackrel{18}{*}_{\sim}^{\sim}$	
	39¢0a				9888\％	888\％		\％	엉옹见	※かめざッ	788：	${ }_{\substack{0 \\ \hline \\ \sim}}$	
	※※※二93	9\％जैड	g		¢\％\％\％			¢ \％\％\＃		wxaydy		建	

Perturbations of the Latitude, by the Earth.
Horizontal Argument $=1$.
Constant added $0^{\prime \prime \prime} .62$.
l'eriod of Argument 1., 224a.7.

$\begin{aligned} & \text { Arg. } \\ & \text { N1. } \end{aligned}$	$\stackrel{1}{-}$	${ }_{8}^{\text {d }}$	$1{ }^{\text {d }}$	21	32	$4{ }_{4}^{\text {d }}$	$4{ }^{\text {d }}$	$5{ }_{6}^{\text {d }}$	$6{ }^{\text {d }}$	78	$8{ }^{\text {d }}$	88	$9{ }_{6}^{\text {d }}$	10.1	$11^{\text {di }}$
120	8.5	91	95	93	99	99	96	91	85	77	69	69	52	45	39
12:	$8:$	89	96	109	103	105	104	101	96	89	81	73	64	57	51
12.1	76	8.5	93	93	105	103	110	1013	105	99	93	8.5	37	70	63
126	(6)	78	88	96	103	10¢	112	112	111	107	102	95	83	81	3
123	61	71	81	91	99	106	112	114	114	112	109	04	93	92	86
130	54	64	74	84	94	103	109	113	115	115	113	09	104	100	94
132	47	57	67	77	88	97	105	110	114	116	115	13	109	106	101
134	41	50	60	70	81	91	99	107	112	114	115	14	112	110	106
136	36	44	53	63	74	84	94	10 t	108	112	114	14	113	112	110
135	32	39	47	56	67	7	87	95	103	108	111	13	113	112	111
140	29	35	41	50	-59	70	79	89	97	102	107	10	111	111	111
14.	23	32	37	44	53	62	72	81	89	96	101	105	107	109	109
14.4	30	30	35	40	47	56	64	73	89	$8!$	94	99	102	105	106
146	33	32	35	38	4:3	50	53	6 GG	74	81	87	92	96	93	100
148	38	37	36	38	41	47	53	60	67	73	79	84	88	91	94
150	4.5	43	41	41	42	46	50	55	61	67	72	76	80	84	8
152	53	53	47	45	45	47	49	53	57	62	66	69	73	77	78
154	61	57	54	51	50	50	51	53	56	59	62	64	67	69	70
156	68	6	61	58	56	55	55	55	56	58	60	61	62	63	64
158	73	71	68	63	62	61	59	59	59	59	59	59	59	59	59
160	\%	76	74	72	69	67	65	63	62	61	60	59	57	56	55
163	80	80	79	77	75	73	70	63	66	63	62	59	57	54	52
164	83	83	83	83	81	79	76	74	71	68	63	61	58	54	50
166	83	86	87	87	87	85	83	80	77	73	69	64	60	54	50
163	83	87	90	91	92	91	89	87	83	79	74	68	63	56	50
170	80	86	90	94	96	96	95	94	90	86	80	74	67	60	52
172	75	83	89	94	98	100	100	100	97	93	88	81	73	65	56
174	69	77	85	92	98	102	104	105	103	100	95	89	81	72	62
176	60	70	79	87	95	101	105	108	108	106	103	97	89	80	69
178	51	61	71	80	89	97	103	108	110	110	108	104	97	88	78
180	42	52	61	72	81	91	98	105	110	112	112	09	104	96	87
182	35	43	52	62	72	82	91	99	106	110	112	11	108	102	94
184	29	35	43	52	63	72	82	91	99	105	109	111	110	106	100
186	26	31	36	44	53	62	72	82	90	98	104	107	108	107	103
188	26	23	32	38	45	53	62	72	81	89	96	01	104	106	103
190	29	28	30	34	39	46	54	(i2	71	80	87.	94	98	101	101
192	33	31	30	32	35	40	47	54	61	70	78	85	91	94	97
194	40	35	33	32	34	37	41	46	53	61	68	75	82	87	91
196	47	41	37	35	34	35	37	41	46	52	59	66	72	78	83
198	56	48	43	39	36	35	35	37	40	45	50	56	62	68	74
20	65	57	51	45	41	38	36	35	36	39	43	47	53	59	65
202	74	67	60	53	47	42	39	36	35	35	37	40	44	49	54
204	83	76	69	62	55	49	44	39	36	34	34	35	37	41	45
206	91	85	78	71	64	58.	51	45	40	37	34	33	33	35	37
208	96	92	86	80	74	67°	60	53	47	42	37	33	31	31	31
210	99	96	92	88	82	76	69	62	55	49	43	37	33	30	29
212	98	97	96	93	89	84	78	72	64	58	50	44	38	33	29
214	94	96	96	95	92	89	85	79	73	67	59	52	45	38	33
216	89	91	93	94	93	92	89	86	81	75	63	61	53	46	39
218	82	85	88	90	92	92	91	89	86	81	76	69	62	55	47
220	74	78	82	85	88	90	91	91	89	86	82	77	70	63	55
222	67	71	75	7)	83	86	88	90	90	89.	86	82	77	70	63
224	60	64	68	73	77	81	84	87	89	89	88	86	82	77	70
226	5.5	58	62	66	${ }_{61}$	75	80	8	87	88	89		86	82	76
$2{ }^{2} 8$	50	52	55	60	65	69	74	79	83	86	89	89	88	86	82
230	46	47	50	54	58	63	68	74	79	83	87	89	89	88	86
23	43	43	45	48	52	57	69	68	74	79	84	87	89	90	
$\stackrel{334}{ }$	41	40	41	43	46	50	$5{ }^{518}$	61	${ }_{6}^{67}$	73 66	79	83 79	87 83		90 89
236 238	41	39 40	38 37	39 36	40 36	34	48 42 48	54 47	60 52	66 59	${ }^{73}$	79 72	83 78 78	87	89 86
240	48	43	39	36	34	35	37	41	45	51	58	65	71	77	81

						ごござす			言らご気				
	ことぎぁむ				8ธワエa			¢ฐ：はํ	๕こらすこう	三㪟㐫》	－28゙され		
¢ ¢ ¢ ¢ \％¢ \％	こき呂号	ษษ\％\％\％	\％A留天：	2x92\％			๕もさちゃ	タ8さ\％	タざら゙らミ	巨s\％	28ざき		
		ชタッงัง	＊8888		玉ョヌ¢¢	＊\％¢ ¢ wix	บ\％ぜきを	8®コ\％			2098ニ\％		
		\％						๕บํ8\％					
	ギきษぜく	18\％9\％	タgayy	2ロびさ	の\％え尔年			8ละ๕\％			28さニッ		
ํํํ82ํ	セセ\％\％\％		ฐฐปสひ	（1989\％		ござで		ษธ	ニニシごに	馬きะン	2゙きかも		
	\％ 4898	※ษ゙ゅニ！	தรู\％		yญ゙ぎち		\％ちゃぎタ	䒠号	ご訁ニ	ธัฐฐ゚き			
	8\％9\％		ざめ゙い	98๕㰮	\＆\％\％゙mor	－105\％	\％¢ \％w	2ロ言言	比気高言こ				
－\％¢＝\％\％	ห\％\％\％	8\％\％\％ํ	๕ざひご	ござき\％		－\times ¢5：	－9888\％	ลニ，	気気言ご気	รจํํํ	g¢t\％gi		
－	\＄8\％Me		ช2પ	\％幺＊	L007000	のこを\％\％	二゙\＆8\％\％			289ำ8	2ssํ％		
	\＄2\％\％\％	Atgsgid	눈ㅈㅇ옹		Frroves				馬ごミロ		9999여요		
＊\％\％\％\％\％		و¢๕ูコ		－\％\％＝	－	こ18\％\％	8®サワ	冎むずす\％			＊8¢98		
－\％¢̧\％\％	צ\％	¢ูป bx	8\％ชช\％	แ巛๕\％むむ			ฐแ゙きる	炀ごき		தロェぎ	むごき๕さ		
Y\％	タキャを9	8두ㄴㅕㅕ․	¢5888		のルッニす			馬こ言むる	8ํx\％9				
¢¢¢ ¢ ¢ ¢ \％\％	299\％	צ\％xyss	¢ปจูงส		50＝${ }^{\text {a }}$	8\％＊＊	ㅝㅝํロる		ฐษำ\％				

	99\％9yy	景会合会会	纯念二荅	¢్¢Mcys	¢\％\％\％wiu		20620゙8	ङびすご．	こいむニす	0∞ verr	－woro	或家	
			らいむちゃへ	$0.9 .40{ }^{\text {a }}$	こニぞ呺	N09894．	\％¢ \％\％\％¢	\％¢ M 心	くいむ心の		\propto ニ二巾	－	
	H゙quck	※ざ心ニコ	Funam	$\cos 00=$	こご忒运			\％	ちゃうへの	－－enac	ニニら゙っで，	困	
\＃w	\＆4yyyy	ざきむち	aosererer	のマロニち	Бこきむぎ心	区ecusquy	凹us\％cy		ニニever	eresoos＝	こちごせです	密	
	¢¢¢ Mivis	もあぁすへ	cramas	のがあん	ঢ秘呺运	\＆uckscig	¢\％\％\％\％\％		むठゃいの	の，	マビ心込	㦹	
		ぐせいのヘ	$\omega \omega \omega$	入もむび心		\＆ֻ\％MGMy		※綕ちらぁ	चoxav	\propto いたニい		足	
		む00ムル	1020000 ．	๑ニらあむ	209990	\＆uqucis	\％ick		ご $\propto \sim \infty$	あむごくせ		$\stackrel{(1)}{6}$	
	きむもあむ	Cownor	－＊	ニニム＊	צホ		¢	※゙比むす	$\varphi \infty<$		20w \％\％	${ }_{6}^{8}$	
\％\％\％\％w	さぜくむた	क．cosou－	－wervö	む二ぎき\％			※※む心\％	あひひニす	ம๐びニひ		¢¢¢ \％\％\％	Q ${ }_{\text {ard }}$	
	ざさひいの	－10－O－	$10 \wedge \sim$ ®̈	ニ8\％	¢¢	¢్¢¢Mus	（\％®®ざひ	びムニずo	－もニム゙．	⑲\％		$\stackrel{0}{20}$	
GE\％M M	のニすべ	ハーーール			\％	¢4\％	¢が心びす	むニざov	厄ニШらも	Stiticis	Hicusuiz	禺	
\％¢以	¢゙っ $ニ$ ¢（1）	－10－	ヘモゃも！		¢旡品出监	¢0w icio	ぎすこムむ	F0000		civicic		$\stackrel{10}{8 .}$	
	こoのメ＊	200006n	もあもむき			¢80	ムあむニち	－			\％¢ Mququ	${ }_{\text {cio }}$	
	ロサーツo	coscros＝	二こざきは			※ポ心ぎこ	びひニーか	$\checkmark \infty \infty$ ごた	ニラ8゙ざ	¢0\％\％\％Mis		®＊	
	$\infty \square \Delta \omega$	－のめニこ		\％	¢\％\％刃 M	※ぎもここ	にちゃuNu	マッロニあ	Бもせぎ	¢G¢゙Mưy	\％¢icusi		
8\％ニちニめ	acrumer	人もにらい			\％Wiccic	きこここニ		4∞ ち心或			Huccus	芯	

Fram each of the quantities K_{x}. K_{y} and K_{z} the constant $2 y^{\prime \prime} .00$ has been subtracted; and from log k_{y} the constant 0.0000089 , and from $\log _{0} k_{z}$ the constant 0.000006°).

Values, for the beginning of the year, of $K_{x}, K_{y}, \& \&$. , and of the Arguments of Nutation, for Washington Mean Noon of Jan. 0 in Common Years and Jan. 1 in Bissextile Years.

Year.	K_{x}.	K_{y}.	K_{z}.	$\log k_{\mathrm{x}}$.	$\log k_{y}$.	$\log k_{2}$.	XV.	XVI.
1800	895888	1. 27 \% 0.71	$35 \underbrace{2} 46{ }^{\prime} \quad 30.37$	9.9992901	9.9596717	9.6186183	$617{ }^{\text {d }}$. 2	$1.8{ }^{\text {d }}$
1801	8.88	0.84	28.48	2900	6739	6080	6535.2	1.5
1802	8.93	0.98	26.59	2900	6761	5978	102.0	1.3
1803	8.98	1.11	24.70	2899	6783	5875	467.0	1.0
$1804 B$.	9.04	1.24	22.81	2898	6806	5773	833.0	1.8
1805	9.09	1.37	20.93	2897	6828	5670	1198.0	1.6
1806	9.15	1.51	19.04	2897	6850	5567	1563.0	1.3
1807	9.20	1.64	17.16	2896	6872	5464	1928.0	1.1
$1808 B$.	9.24	1.77	15.27	2896	6894	5362	2294.0	1.8
1809.	9.29	1.90	13.39	2895	6916	5259	2659.0	1.6
1810	9.33	2.03	11.50	2894	6939	5156	3024.0	1.4
1811	9.37	2.16	9.62	2894	6961	5053	3389.0	1.1
$1812 B$.	9.41	2.30	7.74	2893	6983	4950	3755.0	1.9
1813	9.45	2.43	5.85	2893	7015	4848	4120.0	1.6
1814	9.49	2.56	3.97	2892	- 7037	4745	4485.0	1.4
1815	9.53	2.69	2.09	2892	7059	4642	4850.0	1.1
1816B.	9.58	2.82	$35246 \quad 0.21$	2891	7082	4539	5216.0	1.9
1817	9.63	2.95	$352 \quad 45 \quad 58.33$	2890	7104	4436	5581.0	1.7
1818	9.69	3.08	56.45	2890	7126	4334	5946.0	1.4
1819	9.75	3.21	54.57	2889	7148	4231	6311.0	1.2
$1820 \mathrm{~B} .$	9.80	3.34	52.69	2888	7170	4128	6677.0	1.9
1821	9.85	3.47	50.81	2887	7192	4025	243.7	1.7
1822	9.91	3.60	48.93	2887	7215	3922	608.7	1.4
1823	9.97	3.73	47.06	2886	7237	3820	973.7	1.2
$1824 B$.	10.03	3.86	45.18	2885	7259	3717	1339.7	2.0
1825	10.08	3.99	43.30	2885	7281	3614	1704.7	1.7
1826	10.13	4.12	41.43	2884	7303	3511	2069.7	1.5
1827	11.17	4.25	39.55	2883	7325	3408	2434.7	1.2
$1828 B$.	10.21	4.38	37.68	2883	7347	3305	2800.7	2.0
1829	10.25	4.51	35.80	2882	7370	3202	3165.7	1.7
1830	10.29	4.63	33.93	2882	7392	3099	3530.7	1.5
1831	10.33	4.76	32.06	2881	7414	2996	3805.7	1.3
$1832 B$.	10.37	4.89	30.19	2881	7436	2893	4261.7	2.0
1833	10.42 10.46	5.02 5.15	28.31 26.44	2880 2879	7458 7480	2790 2687	4626.7 4991.7	1.8 1.5
1834	10.46	5.15	26.44	2879	7480	2687	4991.7	1.5
1835	10.51	5.28	24.57	2879	7503	2584	5356.7	1.3
$1836 B$.	10.57	5.40	22.70	2878	7525	2481	5722.7	2.0
1837	10.62	5.53	20.83	2877	7547	2378	6087.7	1.8
1838	10.68	5.66	18.96	2877	7569	2275	6452.7	1.6
1839	10.73	5.79	17.09	2876	7591	2172	19.4	1.3
1840 B .	10.78	5.91	15.22	2875	7613	2069	385.4	2.1
1841	10.84	6.04	13.35	2875	7636	1966	750.4	1.8
1842	10.90	6.17	11.48	2874	7658	1863	1115.4	1.6
1843	10.95	6.30 6.42	9.62 7.75	2873 2872	7680	1760 1657	1480.4 1846.4	1.3 2.1
$1844 B$.	11.01	6.42					1846.4	2.1
1845	11.06	6.55	5.88	2872	7724	1554	2211.4	1.9
1846	11.10	6.67	4.01	2871	7746	1451	2576.4	1.6
1847	11.14	6.80	250 45	2871	7769	1348	2941.4	1.4
$1848 B$. 1849	$\begin{array}{rr} \\ & 11.18 \\ 89 & 58 \\ 11.22\end{array}$	$127 \quad \begin{aligned} & \\ & 1\end{aligned}$	$\begin{array}{rrrr}352 & 45 & 0.28 \\ 352 & 44 & 58.42\end{array}$	9.9992870	9.9597813	1245 9.6181142	3307.4 3672.4	2.1.9

From each of the quantities $K_{\mathrm{x}}, K_{\mathrm{y}}$ and K_{z}, the constant $20{ }^{\prime \prime} .00$ has been subtracted; and from log k_{y} the constant 0.0000089 , and from $\log k_{z}$ the constant 0.0000560 .

Values, for the beginning of the year, of K_{x}, Π_{y}, \&-c., and of the Arguments of Nutation, for Washington Mean Noon of Jan. 0 in Common Ycars and Jan. 1 in Bissextile Years.

Year.	I_{x}.	Π_{y}.	K_{z}.	$\log k_{x}$.	$\log k_{y}$.	$\log k_{z}$.	XV.	XVI.
1850	89 58́ 11.127	1 i 27 7' 7.18	$352^{\circ} 44{ }^{\text {c }} 56.55$	9.9992869	9.9597825	9.6181039	4037.4	${ }^{1.6}$
1851	11.31	7.31	54.69	2869	7847	0936	410:2.4	1.4
$185: B$.	11.35	7.43	52.83	2868	7869	0833	4768.4	2.2
1853	11.40	7.56	50.96	2867	7891	07:29	51333.4	1.9
1854	11.44	7.68	49.10	2867	7914	06:6	5198.4	1.7
1855	11.50	7.81	47.21	2866	7936	0523	5863.4	1.4
1856 B .	11.56.	7.93	45.38	2865	7958	0420	$6: 29.4$	2.2
1857	11.62	8.06	43.52	2865	7980	0317	6591.4	1.9
1858	11.67	8.18	41.66	2861	8002	0213	161.2	1.7
1859	11.73	8.31	39.80	2863	8024	0110	526.2	1.5
1860 B.	11.79	8.43	37.94	2863	8046	9.6180007	892.2	2.2
1861	11.81	8.56	36.08	2862	8069	9.6179904	1257.2	2.0
186:	11.89	8.68	31.22	2861	8091	9801	16:2.2	1.7
1863	11.94	8.80	32.37	2861	8113	9697	1987.2	1.5
1861 B.	11.99	8.93	30.51	2860	8135	9594	2353.2	2.2
1865	12.03	9.05	28.65	2859	8157	9491	2718.2	2.0
1866	12.07	9.18	26.79	2859	8179	9388	3083.2	1.8
1867	12.11	9.30	21.94	2858	$8: 01$	9285	3118.2	1.5
$1868 B$.	12.15	9.42	23.08	2858	8221	9181	3814.2	2.3
1869	12.19	9.55	21.23	2857	8246	9078	4179.2	2.0
1870	12.21	9.67	19.37	2857	8268	8975	4544.2	1.8
1871	12.28	9.79	17.52	2856	8290	887:	4909.2	1.5
$1872 B$.	12.33	9.92	15.67	2856	8312	8768	5275.2	2.3
1873	12.39	10.04	13.81	2855	8334	8665	5640.2	2.1
1874	12.44	10.16	11.96	2854	8356	8561	6005.2	1.8
1875	12.50	10.28	10.11	2854	8378	8458	6370.2	1.6
1876 B.	12.56	10.40	8.26	2853	8401	8355	6736.2	2.3
1877	12.62	10.53	6.41	2852	8123	8251	302.9	2.1
1878	12.67	10.65	4.56	2851	8145	81.18	667.9	1.8
1879	12.73	10.77	2.71	2851	8167	8014	1032.9	1.6
1880 B.	12.78	10.89	$35244 \quad 0.86$	2850	8489	7941	1398.9	2.4
1881	12.83	11.01	3524359.01	2849	8511	7838	1763.9	2.1
1882	12.88	11.14	57.16	2849	8533	7734	2128.9	1.9
1883	12.93	11.26	55.32	2848	8556	7631	2493.9	1.6
1881 B.	12.97	11.38	53.47	2848	8578	7528	2859.9	2.4
1885	13.01	11.50	51.62	2847	8600	7424	3221.9	2.1
1886	13.05	11.62	49.77	2817	8622	7321	3589.9	1.9
1887	13.09	11.74	47.93	28.16	86.4	7217	3951.9	1.7
188813.	13.13	11.86	46.08	2816	8666	7114	4330.9	2.4
1889	13.18	11.98	44.24	2845	8688	7010	4685.9	2. 2
1890	13.22	12.10	42.39	2814	8711	6907	5050.9	1.9
1891	13.27	12.22	40.55	2844	8733	6801	5415.9	1.7
1892B.	13.33	12.34	38.71	2813	8755	6700	5781.9	2.4
1893	13.39	12.46	36.86	2842	8777	6597	6146.9	2.2
1894	13.45	12.58	35.02	2842	8799	6493	6511.9	2.0
1895	13.50	12.70	33.18	2841	8821	6390	78.6	1.7
1896 B.	13.56	12.82	31.31	2810	8843	6286	414.6	2.5
1897	13.62	12.94	29.50	2810	8866	6183	809.6	2.2
1898	13.67	13.06	27.66	2839	8888	6079	1174.6	2.0
1839	895813.73	12713.18	$35213 \quad 25.82$	9.999:2838	9.9598910	9.6175976	1539.6	1.7

[^4] and from $\log _{i g} l_{2}$ the constant $0.0000 \overline{0} 0$

Year.	K_{x}.	K_{y}.	K_{2}.	Log k_{x}.	Log k_{y}.	$\log k_{\mathrm{z}}$.	XV.	XVI.
1900	89×5813.78		$352^{\circ} 43$ 23 ${ }^{\prime \prime} 98$	9.9992838	9.9598932	9.6175872	1904.6	$1.5{ }^{\text {d }}$
1901	-13.82	13.42	22.14	2837	8954	5768	2269.6	1.3
1902	13.87	13.54	20.30	2837	8976	5665	2634.6	1.0
1903	13.91	13.65	18.47	2836	8998	5561	2999.6	0.8
$1904 B$.	13.95	13.77	16.63	2836	9021	5458	3365.6	1.5
1905	13.99	13.89	14.79	2835	9043	5354	3730.6	1.3
1906	14.03	14.01	12.95	2835	9065	5250	4095.6	1.0
1907	14.08	14.13	11.12	2834	9087	5147	4460.6	0.8
$1908 B$.	14.12	14.25	9.28	2833	9109	5043	4826.6	1.6
1909	14.17	14.36	7.45	2833	9131	4940	5191.6	1.3
1910	14.22	14.48	5.61	2832	9154	4836	5556.6	1.1
1911	14.28	14.60	3.78	2832	9176	4732	5921.6	0.8
$1912 B$.	14.34	14.72	1.95	2831	9198	4629	6287.6	1.6
1913	14.40	14.83	352430.11	2830	9220	4525	6652.6	1.3
1914	14.45	14.95	3524258.28	2829	9242	4422	219.4	1.1
1915	14.50	15.07	56.45	2829	9264	4318	584.4	0.9
$1916 B$.	14.56	15.18	54.62	2828	9287	4214	950.4	1.6
1917	14.62	15.30	52.79	2827	9309	4110	1315.4	1.4
1918	14.67	15.42	50.96	2827	9331	4007	1680.4	1.1
1919	14.72	15.53	49.13	2826	9353	3903	2045.4	0.9
1920 B .	14.76	15.65	47.30	2826	9375	3799	2411.4	1.6
1921	14.80	15.76	45.47	2825	9397	3695	2776.4	1.4
1922	14.84	15.88	43.64	2825	9420	3591	3141.4	1.2
1923	14.88	16.00	41.82	2824	9442	3488	3506.4	0.9
1924B.	14.93	16.11	39.99	2824	9464	3384	3872.4	1.7
1925	14.97	16.23	38.16	2823	9486	3280	4237.4	1.4
1926	15.02	16.34	36.33	2823	9508	3176	4602.4	1.2
1927	15.06	16.46	34.51	2822	9530	3072	4967.4	0.9
$1928 B$.	15.11	16.57	32.68	2821	9552	2969	5333.4	1.7
1929	15.17	16.69	30.86	2821	9575	2865	5698.4	1.5
1930	15.22	16.80	29.03	2820	9597	2761	6063.4	1.2
1931	15.28	16.92	27.21	2819	9619	2657	6428.4	1.0
1932B.	15.34	17.03	25.38	2819	9641	2553	6794.4	1.7
1933	15.40	17.14	23.56	2818	9663	2450	361.1	1.5
1934	15.46	17.26	21.73	2817	9685	2346	726.1	1.3
1935	15.51	17.37	19.91	2817	9708	2242	1091.1	1.0
1936B.	15.57	17.49	18.09	2816	9730	2138	1457.1	1.8
1937	15.62	17.60	16.27	2815	9752	2034	1822.1	1.5
1938	15.66	17.71	14.45	2815	9774	1930	2187.1	1.3
1939	15.71	17.83	12.63	2814	9796	1826	2552.1	1.0
1940 B .	15.75	17.94	10.81 8.99	2814	9818	1722 1618	2918.1	1.8
1941	15.79	18.05	8.99	2813	9841 9863	1618 1514	3283.1	1.6
1942 1943	15.83 15.88	18.17 18.28	7.17 5.36	2813 2812	$\begin{array}{r}9863 \\ +9885 \\ \hline\end{array}$	1514	3648.1 4013.1	1.3 1.1
1943 $1944 B$.	15.88 15.92	18.28 18.39	5.36 3.54	2812	9885 9907	1306	4379.1	1.8
1945	15.97	18.50	352421.72	2811	9929	1202	4744.1	1.6
1946	16.02	18.62	3524159.91	2811	9951	1098	5109.1	1.3
1947	16.07	18.73	58.09	2810	9974	0994	5474.1	1.1
$1948 B$.	- 16.12	${ }_{1} 18.84$	252 56.28	$\begin{array}{r}2809 \\ \hline 9\end{array}$	9.9599996	0890	5840.1	1.9
1949	$\begin{array}{llll}89 & 58 \quad 16.18\end{array}$	12718.95	3524154.46	9.9992809	9.9600018	9.6170786	6205.1	1.6

From each of the quantities $K_{\mathrm{x}}, K_{\mathrm{y}}$ and K_{z}, the constant $20^{\prime \prime} .00$ has been subtracted ; and from $\log k_{\mathrm{y}}$ the constant 0.0000089 ,

Corrections of $K_{x}^{-}, K_{x}, \& \cdot c$, due 10 Lumar Nutution, for 1850. Period of Argument XV., Grged. 3.													
$\begin{aligned} & \text { Arg. } \\ & \mathrm{XV} . \end{aligned}$	$\triangle K_{\mathrm{x}}$.	ΔK_{y}.	$\triangle K_{z}$.	$\begin{aligned} & \text { Var. in } \\ & 100 \mathrm{yrs} . \end{aligned}$	$\Delta \log k_{\text {c }}$	log. i_{2}	$\begin{aligned} & \text { Arg. } \\ & \mathrm{NV.} \end{aligned}$	$\triangle K_{x}$.	ΔK_{y}^{*}.	$\triangle K_{z}$.	$\begin{aligned} & \text { Var. in } \\ & 100 \text { yrs. } \end{aligned}$	$\Delta^{\log / h_{y}}$.	$\Delta \log / i_{i}$.
${ }_{0}^{11}$	18.00	18.63	- 20.05	+0.03	1	850	2100	3:2.0:	81.70	28.17	-0.02	148	140.
50	18.78	19.42	20.79	0.03		817	2450	31.53	31.18	27.89	0.02	151	125
100	19.56	20.20	$21.5 \pm$	0.03	2	844	2500	31.00	30.63	27.28	0.02	154	111
150	20.31	20.98	22.25	0.03	3	840	2550	30.45	30.05	26.64	0.02	157	98
200	21.11	21.75	22.95	0.03	4	835	2600	39.87	29.45	25.99	0.03	160	86
250	21.87	29.50	23.65	+0.02	5	829	2650	29.26	28.82	25.32	-0.03	162	74
300	22.63	23.25	24.33	0.02	7	822	2700	28.63	28.17	24.63	0.03	161	63
350	23.38	24.00	25.00	0.02	8	814	2750	27.97	27.49	23.92	0.03	166	53
400	24.12	24.71	25.66	0.02	10	806	2800	27.29	26.78	23.19	0.03	168	41
450	24.85	25.46	36.30	0.02	12	797	2850	26.50	$\bigcirc 6.06$	22.45	0.03	170	36
500	25.57	26.17	26.93	+0.02	14	787	2900	25.87	25.33	21.70	-0.03	172	28
550	26.27	26.86	27.53	0.02	16	777	2950	25.13	24.58	20.94	0.03	173	21
600	26.94	27.52	28.10	0.02	19	766	3000	21.38	23.81	20.17	0.03	174	16
650	27.60	28.17	28.65	0.02	21	754	3050	23.61	23.03	19.39	0.03	175	11
700	28.25	28.80	29.19	0.02	24	741	3100	22.83	22.23	18.60	0.03	176	7
750	28.87	29.41	29.69	+0.02	27	727	3150	22.04	21.43	17.81	-0.03	176	
800	29.47	29.99	30.17	0.02	29	713	3200	21.24	20.62	17.02	0.03	177	2
850	30.05	30.55	30.62	0.01	32	699	3250	20.43	19.80	16.23	0.03	177	1
900	30.60	31.09	31.05	0.01	36	684	3300	19.62	18.99	15.45	0.03	177	0
950	31.13	31.60	31.45	0.01	39	668	3350	18.80	18.16	14.66	0.03	177	1
1000	31.63	32.08	31.81	+0.01	42	652	3400	17.98	17.34	13.88	-0.03	177	3
1050	32.10	32.53	32.14	0.01	46	635	3450	17.16	16.51	13.10	0.03	176	5
1100	32.55	32.95	32.45	0.01	49	618	3500	16.35	15.70	12.34	0.03	175	9
1150	32.97	33.34	32.73	0.01	53	600	3550	15.54	14.89	11.59	0.03	174	13
1200	33.35	33.70	32.97	+0.01	57	582	3600	14.73	14.09	10.84	0.03	173	18
1250	33.70	34.03	33.18	0.00	61	564	3650	13.93	13.29	10.11	-0.03	172	21
1300	34.02	34.32	33.35	0.00	64	545	3700	13.14	12.50	9.40	0.02	171	31
1350	34.31	34.58	33.49	0.00	68	526	3750	12.36	11.72	8.70	0.02	169	39
1400	31.56	34.81	33.60	0.00	72	507	3800	11.59	10.96	8.02	0.02	167	48
1450	34.78	35.00	33.67	0.00	76	488	3850	10.84	10.22	7.36	0.02	165	58
1500	34.96	35.16	33.70	0.00	80	469	3900	10.10	9.49	6.72	-0.02	163	68
1550	35.10	35.27	33.70	0.00	84	449	3950	9.38	8.78	6.11	0.02	160	80
1600	35.21	35.35	33.66	0.00	88	429	4000	8.68	8.10	5.52	0.02	158	92
1650	35.28	35.39	33.58	-0.01	93	410	4050	8.00	7.43	4.95	0.02	155	101
1700	35.32	35.40	33.48	0.01	97	390	4100	7.35	6.79	4.42	0.02	152	118
1750	35.32	35.37	33.34	-0.01	101	370	4150	6.72	6.18	3.91	-0.02	150	132
1800	35.29	35.31	33.17	0.01	105	351	4200	6.11	5.59	3.43	0.02	116	116
1850	35.21	35.20	32.96	0.01	109	332	4250	5.53	5.02	2.98	0.01	143	16%
1900	35.10	35.06	32.71	0.01	113	313	4300	4.98	4.49	2.56	0.01	110	178
1950	34.95	34.88	32.42	0.01	117	294	4350	4.46	3.99	2.18	0.01	137	19.1
2000	31.77	31.67	32.11	-0.01	120	275	4400	3.96	3.52	1.82	-0.01	133	211
2050	34.55	31.42	31.76	0.02	124	257	4450	3.50	3.08	1.50	0.01	129	229
2100	34.29	34.14	31.38	0.02	128	239	4500	3.07	2.67	1.21	0.01	126	247
2150	34.00	33.82	30.97	0.02	132	221	4550	2.68	2.30	0.97	0.01	122	265
2200	33.67	33.46	30.53	0.0\%	135	204	4600	2.32	1.97	0.75	-0.01	118	28.1
2250	33.31	33.07	30.06	-0.02	139	187	4650	1.99	1.67	0.57	0.00	114	303
2300	32.91	32.64	29.55	0.02	14.2	171	4700	1.70	1.40	0.43	0.00	110	$32: 2$
2350	32.48	32.18	29.0:	0.03	145	155	4750	1.44	1.17	0.32	0.00	106	311
2400	32.02	31.70	28.47	-0.0%	118	140	4800	1.20	0.98	0.25	0.00	102	360

$\triangle \log$ kiy and $\Delta \log _{5} k_{i}$ are in mits of the seventh decinal phace.
The constants added are, $18^{\prime \prime} .00$ to $\triangle K_{x}, 18^{\prime \prime} .00$ to $\triangle K_{y}, 1 \pi^{\prime \prime} .00$ to $\triangle K_{z}, 88$ to $\triangle \log l_{y}$, and 430 to $\triangle \log l_{z}$.

Corrections of $K_{\mathrm{x}}, K_{\mathrm{y}}$, \&.c., due to Lunur Nutation, for $1-50$ 							Corrections of $\kappa_{\mathrm{x}}, \kappa_{y}$, f.e., due to Solor Autation, for 18.50. Period of Argument XV1, 36ion:24.							
$\begin{aligned} & \text { Arg. } \\ & \text { Ni. } \end{aligned}$	ΔK_{x}.	ΔK_{y}	$\triangle K_{2}$.	Var.in ItOy yrs	$\Delta \log k_{\text {y }}$	$\triangle \log \mathrm{l}_{2}$	$\begin{gathered} \text { Arg. } \\ \text { XVi. } \end{gathered}$	ΔK_{x}	ΔK_{y}.	$\triangle K_{2}$	$\begin{aligned} & \text { Vir. in } \\ & 100 \mathrm{yrs} . \end{aligned}$	$\Delta \log i_{y}$.	$\log ^{1} k_{2}$	$\begin{aligned} & \text { Solar } \\ & \text { Nimat'n } \end{aligned}$
4800	1.10	0.98	0.25	0.00	102	:360	0	2.13	2"3:3	4117	0.00	6	105	$+0^{\prime \prime} .36$
48.0)	1.01	0.8:3	0.22	0.00	98	380)	5	2.\%\%	2.51	33.36	0.00	6	10.5	0.57
19)0	(1.8!)	0.71	0.22	0.00	91	100	10	2.86	2.71	33.53	0.00	6	106	0.76
4950	0.78	0.60	0.25	0.00	90	$1: 0$	15	2.9\%	2.91	33.68	0.00	6	107	0.92
5000	0.71	0.58	0.33:3	$+0.01$	86	439	20	3.06	3.05	3.81	0.00	5	109	1.06
50.50	0.68	0.54	0.11	+0.01	81	459	2.5	3.16	3.16	3.91	0.00	5	111	+1.16
5100	0.68	0.61	0.58	0.01	77	479	30	3.2	3.2:3	3.98	0.00	4	114	1.2:
51.50	0.72	0.68	0.76	0.01	73	498	35	3.25	3.26	4.01	0.00	4	117	1.25
$5 \because 00$	0.79	0.78	0.97	0.01	69	517	40	3.25	3.26	1.01	+0.01	3	120	1.21
5250	0.90	0.92	1.20	0.01	66	536	45	3.20	3. 2.	3.97	0.01	2	12:3	1.19
5:300	1.05	1.10	1.50	+0.01	$6:$	55	50	3.11	3.14	3.89	+0.01	2	126	+1.10
53350	1.23	1.31	1.81	0.01	58	573	55	2.99	3.02	3.75	0.01	1	128	0.98
5100	1.45	1.56	2.15	0.01	51	50\%	(i)	2.81	2.88	3.63	0.01	1	131	0.83
5150	1.70	1.81	2.51	0.0:	50	609	65	2.66	2.71	3.46	0.01	1	133	0.65
5500	1.99	2.16	2.93	0.0:	47	$6: 7$	70	2.47	2.52	3.26	0.01	0	133	0.46
5550	2.31	2.51	3.36	$+0.02$	43	614	75	2.26	2.31	3.01	+0.01	0	133	+0.25
5600	2.67	2.8!)	3.8i3	0.00	40	660	80	2.05	2.10	2.82	0.01	0	133	+0.01
56.50	3.06	3.31	4.33	0.0.2	37	676	8.5	1.83	1.88	2.59	0.01	1	132	-0.18
5700	3.47	3.75	4.81	0.02	333	692	!0	1.62	1.67	2.35	0.01	1	130	0.39
5750	3.91	4.2:	5.37	0.0:	30	707	95	1.42	1.47	2.12	0.01	2	127	0.59
5800	4.39	4.7:	5.93	+0.02	27	721	100	1.24	1.29	1.91	$+0.01$	2	121	-0.77
58.0	4.89	5.21	6.52	0.0:	21	735	105	1.09	1.13	1.72	0.01	3	120	0.92
5900	5.42	5.80	7.13	0.02	22	748	110	0.97	1.00	1.85	0.01	4	115	1.05
5950	5.98	6.38	7.76	. 02	19	760	115	0.87	0.90	3.10	0.0:2	5	110	1.15
6000	6.56	6.98	8.11	0.03	17	77:	120	0.81	0.83	1:29	0.02		105	1.21
6050	7.16	7.60	9.07	+0.03	14	783	125	0.78	0.80	1.20	+0.02	8	99	-1.21
6100	7.78	8.24	9.71	0.0.3	12	793	130	0.78	0.80	1.15	0.0:2	3	91	1.24
6150	8.12	8.90	10.43	0.03	10	803	135	0.8\%	$0.8: 3$	1.13	0.0.2	10	88	1.20
$6: 20$	9.09	9.59	11.14	0.03	9	811	140	0.89	0.90	1.14	0.02	11	$8: 3$	1.13
6250	9.77	10.29	11.86	0.03	7	819	145	1.00	1.00	1.19	0.02	$1:$	77	1.02
63300	10.47	11.01	12.59	+0.03	6	826	150	1.1:3	1.13	1.27	+0.02	13	72	-0.89
(6350	11.18	11.73	13.32	0.0:3	,	83:	15.5	1.29	1.29	1.38	$0.0 \cdot 3$	11	68	0.783
6100	11.91	12.47	14.07	0.03	3	838	160	1.17	1.47	1.51	0.02	15	61	0.55
6150	12.65	13.23	14.8:	0.03	2	812	$1(6)$	1.67	1.67	1.66	0.02	16	60	0.35
6500	13.40	13.99	15.57	0.03	2	8.16	170	1.87	1.87	1.82	0.02	16	58	-0.15
6550	14.16	14.76	16.33	+0.03	1	818	175	2.08	2.08	1.99	+0.02	17	56	+0.06
(6600	14.9:	15.53	17.08	0.03	1	850	180	2.28	2.28	2.16	0.02	17	51	0.26
6650	15.69	16.31	17.83	0.03	0	8.51	18\%)	2.48	2.49	2.333	0.03	17	51	0.46
6700	16.47	17.09)	18.58	0.03	0	85%	150	2.16	2.68	2.19	0.03	17	51	0.61
6750	17.25	17.88	19.33	0.03	1	851	195	2.81	2.85	$\because .64$	0.03	16	55	0.81
G800	18.03	18.66	20.08	+0.03	1	819	200	2.99	3.01	2.78	+0.033	16	56	$+0.96$
6850	18.81	19.45	20.82	0.03	1	8.17	205	3.11	3.14	2.89	0.03	16	57	1.08
6900	19.59	20.23	21.5\%	0.0:3	2	814	910	3.19	3.23	2.97	0.03	16	60	1.16
6950	20.37	21.01	22:27	0.03	3	810	215	3.25	3.29	3.0:3	0.03	15	62	1.22
7000	21.14	21.78	2: 2.98	0.03	4	835	220	3.27	33.32	3.06	0.0:3	15	65	1.21
7050	21.90	22.51	23.68	+0.02	5	829	225	3.26	3.32	3.05	+0.03	11	68	+1.23
7100	22.16	233:29	21.36	0.02	7		230	3.22	3.29	3.02	0.03	11	71	1.19
7150	23.41	\$1.03	25.03	0.02	8	N14	235	3.11	3.20	2.95	0.03	13	73	1.11
7:00	23.31	21.76	25.68	+0.0:	10	806	210	3.0:3	3.11	2.81	+0.0:3	13	76	+1.00

Corrections of $K_{\mathrm{x}}, K_{\mathrm{y}}$, \&.c., duc to Solar Nutation, for 1850 . P'eriod of Argument XVI.. 365d.24.								Parallax and Semi-diameler.						
$\begin{aligned} & \text { irg. } \\ & \text { Nvi. } \end{aligned}$	$\triangle K_{x}$.	$\triangle K_{\mathrm{y}}$	$\triangle K_{z}$	$\begin{aligned} & \text { Var. in } \\ & 100 \mathrm{yrs} \end{aligned}$	$\Delta \log i_{\text {i }}$	$\triangle \log l_{z z}$	$\begin{gathered} \text { Solar } \\ \text { Nutat'n } \end{gathered}$	$\begin{aligned} & \text { log. } \\ & \text { dist.from } \\ & \text { Larth. } \end{aligned}$	Paraflax	Semidiam.	$\left\|\begin{array}{c} \text { Log. } \\ \text { dist from } \\ \text { Earth. } \end{array}\right\|$	Parallax	Semidiam.	
240	3.03	3.11	2.84	$+{ }^{1 \prime} 0.03$	13	76	+1.00							
215	2.89	2.97	2.71	0.03	12	78	0.86		35.'22	31.02	9.85	12.50	12.07	
250	2.72	2.81	2.51	0.03	12	79	0.69	9.40 9.41	39.22	31.02	9.85	12.21	11.80	
255	2.51	-2.63	$\stackrel{2.36}{0.16}$	0.03	12	80	0.51	9.41	31.42 33.61	32. 19	9.87	11.94	11.53	
260	2.35	2.44	2.16	0.04	12	81	0.31	9.42 9.4	33.67	31.75	9.88	11.66	11.27	
205	2.11	2.23	1.93	+0.01	12	81	+0.10	9.41	32.13	31.03	9.89	11.40	11.01	
270	1.9:2	2.01	1.70	0.01	12	80	-0.12							
275	1.71	1.80	1.47	0.01	12	78	0.33	9.45	31.39	30.32	9.90	11.14	10.76	
280	1.51	1.60	1.24	0.01	13	76	$0.5: 3$	9.46	30.68	29.63	9.91	10.89	10.51	
285	1.82	1.41	1.02	0.04	13	72	0.72	9.47	29.98	28.96	9.92	10.64	10.27	
290	1.15	1.23	0.81	+0.04	14	69	-0.89	9.48	29.30	28.30	9.93	10.40	10.01	
29.5	1.00	1.08	0.62	0.04	15	61	1.01	9.49	28.63	27.65	9.94	10.16	9.81	
:300	0.89	0.96	0.46	0.01	16	59	1.15	9.50	27.98	27.0*	9.95	9.93	9.59	
305	0.82	0.88	0.31	0.04	17	54	1.22	9.51	27.31	26.40	9.96	9.70	9.87	
310	0.78	0.84	0.25	0.04	19	48	1.26	9.50	$26 . \%$	25.81	9.97	9.48	9.16	
315	0.79	0.8 .1	0.20	+0.04	20	42	-1.25	9.53	26.11	25.22	9.98	9.26	8.95	
$\therefore 2$	0.83	0.88	0.18	0.04	21	36	1.21	9.51	25.5:	21.65	9.99	9.05	8.74	
325	0.21	0.6	0.20	0.04	22	31	1.13							
330	1.02	1.67	0.25	0.04	23	25	1.02	9.55	24.94	24.09	0.00	8.85	8.55	
335	1.17	1:20	0.33	0.05	24	20	0.88	9.56	21.37	23.54	0.01	8.65	8.35	
310	1.33	1.36	0.44	+0.05	25	15	-0.72	9.57	23.81	23.00	0.02	8.45	8.16	
31.5	1.51	1.54	0.57	0.05	26	11	0.54	9.58	23.27	22.48	0.03	8.26	7.198 7.79	
350	1.72	1.75	0.73	0.05	27	8	0.33	9.59	22.71	21.97	0.04	8.07	7.79	
35.5	1.95	1.98	0.92	0.05	27	5	-0.10	9.60	22.23	21.47	0.05	7.89	7.6\%	
360	2.18	2.2:	1.11	0.05	28	3	+0.13	9.61	21.72	20.98	0.05 0.06	7.71	7.41	
365	2.40	2.44	1.30	+0.05	28	2	+0.35	9.62	21.20	20.50	0.07	7.53	7.27	
370	2.61	2.65	1.49	+0.05	28	2	+0.56	9.63	20.74	20.03	0.08	7.36	7.11	
$\triangle \log l_{i y}$ and $\triangle \operatorname{lng} k_{z}$ are in units of the seventh decimal. Constants added are, $2^{\prime \prime} .00$ to $\Delta K_{x}, 2^{\prime \prime} .00$ to $\triangle K_{y}, 3^{\prime \prime} .00$ to $\triangle K_{z}$, 1 to $\triangle \log k_{\mathrm{k}}$, and 130 to $\triangle \log k_{z}$.								9.61	20.27	19.58	0.09	7.19	6.95	
								9.65	19.81	19.13 18.70	0.10 0.11	7.03 6.87	6.79 6.63	
TABHEXTHE Factors for abtaining $\triangle x, \Delta y, \Delta z$ from $\triangle \beta$.								9.67	18.92	18.87	0.12	6.71	6.18	
								9.68	18.49	17.85	0.13	6.56	6.31	
								9.69	18.07	17.45	0.14	6.41	6.19	
Orbit. Long.			For $\triangle x$.		For Δy.	For $\triangle z$.		9.70	17.65	17.05	0.15	6.26	6.05	
					9.71			17.25	16.66	0.16	6.12	5.91		
0		180°	+0.020			-0.145	+0.322		9.72	16.86	16.28	0.17	5.98	5.78
10		190	0.018		-0.148	$\begin{aligned} & 0.32: 3 \\ & 0.3 \div 4 \end{aligned}$		9.73	16.48	15.91	0.18 0.19	5.85	5.65	
20		200			0.150			9.74	16.10	15.55	0.19	5.71	5.52	
30		210	0.013		0.152	0.325		9.75	15.73	15.20	0.20	5.58	5.39	
40		$2: 0$. 09	0.152	0.325		9.76	15.38	14.85	0.21	5.46	5.27	
50		230	+0.006		-0.151	+0.325		9.77	15.03	14.51	0.22	5.33	5.15	
60		240	0.003		0.149	0.324		9.78	14.68	14.18	0.23	5.21	5.03	
70		250	0.001		0.146	0.323		9.79	14.35	. 13.86	0.24	5.09	4.92	
80		260	0.000		0.143	0.321								
90		270	0.000		0.139	0.320		9.80	14.02	13.51	0.25	4.98	4.81	
			+0.002		-0.136	+ 0.319		9.81	13.70	13.21	0.26	4.86	4.70	
110		290	0.004		-0.136	0.318		9.82 9.83	13.39 13.09	12.93 12.64 12.35	0.27 0.28	4.75 4.64	4.59 4.48	
$1: 0$		300	0.007		0.132	0.317		9.81	12.79	12.35	0.29	4.54	4.38	
130		310	0.011		0.132	$\begin{aligned} & 0.317 \\ & 0.317 \end{aligned}$		9.85	12.50	12.07	0.30	4.43	4.28	
140		320		. 014	0.133									
150		330	+0.017		-0.135	+0.318								
160		310	0.019		0.138	0.3190.321								
170		3350	0.020+0.020		0.141									
180		360			-0.145	+0.392								

Motion of the Arguments for Centuries.

TABLE KI.V. Values of the Equation $0^{\prime \prime} .28$:2 $\sin \left(4 t^{\prime \prime \prime}+3 t^{\prime}-7 l^{\prime \prime}\right.$ $+147^{\circ} .1$.)			Reduction to the Ecliptic for 1850. Longitude $+\left(360^{\circ}-\delta\right)$, or this angle diminished by 180°.									
			Arg.	${ }^{\prime}$	10^{\prime}	20^{\prime}	30^{\prime}	40'	50^{\prime}	$\begin{aligned} & \text { Diff. } \\ & \text { for } 10^{\prime} \end{aligned}$	$\begin{aligned} & \text { Var. in } \\ & 100 \text { yrs. } \end{aligned}$	
Year.	Equa.	1)ifl: for 10 yrs .	\%	$\begin{array}{rr} 1 \prime \prime \\ -0 & 0.00 \\ 0 & 6.31 \end{array}$	$\begin{aligned} & 11.05 \\ & 1.36 \end{aligned}$	$\begin{aligned} & \prime \prime \prime \\ & 6.10 \\ & 8.41 \end{aligned}$			${ }^{\prime \prime}{ }^{\prime \prime} .26$			
							9.46	10.51	11.56	1.05	0.00	178
1800	+0. ${ }^{\prime \prime}$	$\begin{array}{r} -3 \\ 15 \end{array}$	233	$\begin{array}{ll} 0 & 12.61 \\ 0 & 18.90 \end{array}$	$\begin{aligned} & 13.66 \\ & 19.94 \end{aligned}$	$\begin{aligned} & 14.71 \\ & 20.99 \end{aligned}$	$\begin{array}{r} 15.76 \\ 2.2 .01 \end{array}$	$\begin{gathered} 16.80 \\ 23.08 \end{gathered}$	$\begin{aligned} & 17.85 \\ & 24.12 \end{aligned}$	1.05	-0.01	177
1810	0.27\%									1.04	0.01	
18:0	0.251	27	4	025.16	26.20	27.24	28.28	29.31	30.35		0.02	175
1840	0.218	3745	6	-0 31.39	$\begin{aligned} & 32.43 \\ & 38.61 \end{aligned}$	33.4639.64	31.5040.66	$\begin{aligned} & 35.53 \\ & 41.69 \end{aligned}$	$\begin{aligned} & 36.56 \\ & 42.71 \end{aligned}$	1.031.02	-0.02	$\begin{aligned} & 174 \\ & 173 \end{aligned}$
	0.176			037.59							0.020.03	
		-51	6	043.74	$\begin{aligned} & 44.76 \\ & 50.84 \end{aligned}$	$\begin{aligned} & 45.77 \\ & 51.85 \end{aligned}$	$\begin{aligned} & 46.79 \\ & 52.85 \end{aligned}$	47.80	48.82	1.011.01		172
1850 1860	+0.128 0.073 0		8	049.83				53.8659.85	51.87		0.03	171
1860	0.073 +0.016	56		055.87	56.87	57.86	58.86		60.85	1.00	0.03	170
1880	-0.0.43	58		-1 1.84	2.83	3.82	4.80	5.78	6.76		-0.04	169168
1890	0.100	54-49	10	17.73								
1900			12	113.54	14.50	15.16	16.11	17.36	18.31	0.97 0.95	0.04 0.05	$\begin{aligned} & 168 \\ & 167 \end{aligned}$
1910	-0.152	$\begin{aligned} & 42 \\ & 31 \end{aligned}$	13	$\begin{array}{ll} 1 & 19.26 \\ 1 & 24.88 \end{array}$	$\begin{aligned} & 20.20 \\ & 25.81 \end{aligned}$	$\begin{aligned} & 21.11 \\ & 26.74 \end{aligned}$	$\begin{aligned} & 22.08 \\ & 27.66 \end{aligned}$	23.0128.58	$\begin{aligned} & 23.95 \\ & 29.50 \end{aligned}$	0.940.92	0.050.05	166165
1920	0.236											
1930	0.261	20	15	-1 30.41	21. 22	32.23	33.13	$\begin{aligned} & 31.03 \\ & 39.36 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 40.24 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.88 \end{aligned}$	-0.06	161163
1940	0.277	-10	16	135.82	36.71	37.60	38.48				0.06	
1950	-0.282		17	141.11	41.98	42.85	43.71	44.5749.66			0.06	16:
1960	-0.282	+ ${ }_{14}$	18	146.28	47.13	47.98	48.82		50.50	0.84	0.07	161160
1970	0.254	25	19	1-51.33	52.16	52.98	53.80	54.61	55.42	0.82	0.07	
1980	0.223	36	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	-1 50.23	57.04	57.84	58.64	59.43	60.22	0.80-0.07		159158
1990	0.182	44+51		$\begin{array}{ll} 2 & 1.00 \\ 2 & 5.62 \end{array}$	$\begin{aligned} & 1.78 \\ & 6.37 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 7.12 \end{aligned}$	3.33	$\begin{aligned} & 4.10 \\ & 8.60 \end{aligned}$	$\begin{aligned} & 4.86 \\ & 9.31 \end{aligned}$	0.77	0.08	
2000	-0.131		22				7.86			0.74	0.08	158 157
2010	0.080	$\begin{array}{r} +01 \\ 56 \\ 58 \end{array}$	23	$\begin{array}{ll}2 & 10.08 \\ 2 & 14.39\end{array}$	$\begin{aligned} & 10.81 \\ & 15.09 \end{aligned}$	$\begin{aligned} & 11.54 \\ & 15.79 \end{aligned}$	12.2616.48	$\begin{aligned} & 12.98 \\ & 17.17 \end{aligned}$	$\begin{aligned} & 13.69 \\ & 17.86 \end{aligned}$	0.72 0.69	$\begin{aligned} & 0.08 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 156 \\ & 155 \end{aligned}$
2020	-0.023									0.69		
${ }^{2} 030$	+0.036	53	2526	-2 18.54	19.22	19.89	20.56	21.22	21.87	0.66	-0.09	154
2040	0.093			222.51	23.16	23.80	24.44	25.07	25.70	0.63	0.09	153
2050	+0.146	50	27	226.32	26.91	27.55	28.16	28.76	29.35	0.60	0.09	152
2060	+0.193	42	28	${ }^{2} 2929.94$	30.52	31.10	31.67	32.24	32.81	0.57	0.10	151
2070	0.2:31	33	29	233.38	33.94	34.49	35.01	35.58	36.11	0.54	0.10	150
2080	0.259	23	30	-2 36.64	37.16	37.68	38.19	38.70	39.20	0.51	-0.10	149
2090	0.277	+12	31	¢ 39.70	40.19	40.68	41.16	41.61	42.11	0.48	0.10	148
2100	+0.282		32	242.57	43.03	43.48	4393	41.38	41.80	0.45	0.10	147
2110	+0.275	-13	33	245.25	45.68	46.10	46.52	46.93	47.33	0.41	0.10	146
			34	247.72	48.11	48.49	48.87	49.25	49.62	0.38	0.11	145
			35	-2 49.99	50.35	50.70	51.05	51.39	51.72	0.34	-0.11	144
			36	252.04	52.36	52.68	52.99	53.30	53.60	0.31	0.11	143
Multi		-	37	253.90	54.19	51.47	51.75	55.02	55.28	0.27	0.11	142
	uis Equa		38	255.51	55.79	56.01	56.28	$56.5 \pm$	56.75	0.24	0.11	141
			39	256.96	57.18	57.39	57.60	57.80	57.99	0.20	0.11	110
			40	-258.17	58.35	58.52	58.69	58.85	59.01	0.17	-0.11	139
1		302.4	41	259.17	59.32	59.46	59.59	59.72	59.84	0.13	0.11	138
2		(501.8	42	259.94	60.05	60.15	60.25	60.34	60.42	0.09	0.11	137
3		907.2	43	330.50	0.57	0.61	0.70	0.75	0.79	0.05	0.11	136
4		209.6	44	-3 0.83	0.86	0.89	0.91	0.93	0.94	0.02	-0.11	135
		1512.0		60^{\prime}	50^{\prime}	40^{\prime}	33^{\prime}	20 ${ }^{\prime}$	10^{\prime}			Arg.
7		116.8		-When	curt	tio		rcud	the			able,
		721.6	the are	ns of minute lected with t	must be sign +	ad from instead of	bott	and the	Reductio	ud it	ecular	iation

Argument $=$ Orbit Longitude $+\left(360^{\circ}-8\right)$, or this angle diminished by 180°.									
Arg.	9^{\prime}	10^{\prime}	20^{\prime}	30^{\prime}	40^{\prime}	59^{\prime}	$\begin{aligned} & \text { Diff: } \\ & \text { for } 10^{\prime} . \end{aligned}$	Var. in 100 yrs.	
45	-3 ${ }^{\prime} 0.95$	0.95	0.94	${ }^{\prime \prime} 1$	0.91	0.88	${ }^{\text {\% }} 0.02$	-0.11	134
46	$\begin{array}{lll}3 & 0.85\end{array}$	0.81	0.77	0.72	0.66	0.59	0.05	0.11	133
47	$3 \quad 0.52$	0.44	0.36	0.27	0.18	0.08	0.09	0.11	132
48	259.98	59.87	59.75	59.63	59.50	59.36	0.13	0.11	131
49	259.21	59.06	58.90	58.74	58.57	58.40	0.16	0.11	130
50	-2 58.23	58.05	57.86	57.66	57.46	57.25	0.20	-0.11	129
51	257.03	56.80	56.57	56.34	56.10	55.86	0.24	0.11	128
52	255.61	55.35	55.09	54.82	54.54	54.26	0.27	0.11	127
53	253.98	53.69	53.39	53.09	52.78	52.46	0.31	0.11	126
54	252.14	51.81	51.48	51.14	50.80	50.45	0.34	0.11	125
55	-2 50.09	49.73	49.36	48.99	48.61	48.22	0.38	-0.10	124
56	247.83	47.43	47.03	46.62	46.21	45.79	0.41	0.10	123
57	245.37	44.94	44.51	44.07	43.62	43.16	0.44	0.10	122
58	242.70	42.23	41.76	41.28	40.80	40.32	0.48	0.10	121
59	239.84	39.35	38.85	38.35	37.84	37.32	0.51	0.10	120
60	-2 36.78	36.25	35.72	35.18	34.64	34.09	0.54	-0.10	119
61	233.53	32.97	32.41	31.84	31.27	30.69	0.57	0.09	118
62	230.09	29.50	28.91	28.31	27.71	27.10	0.60	0.09	117
63	226.47	25.85	25.22	24.59	23.95	23.31	0.63	0.09	116
64	222.67	22.02	21.37	20.71	20.05	19.38	0.66	0.09	115
65	-2 18.69	18.01	17.33	16.64	15.95	15.25	0.69	-0.08	114
66	214.55	13.84	13.13	12.41	11.69	10.97	0.72	0.08	113
67	210.24	9.51	8.77	8.03	7.29	6.54	0.74	0.08	112
68	$2 \quad 5.78$	5.02	4.26	3.49	2.72	1.94	0.77	0.07	111
69	161.16	60.38	59.59	58.80	58.01	57.21	0.79	0.07	110
70	-156.39	55.58	54.77	53.95	53.13	52.30	0.82	-0.07	109
71	151.48	50.65	49.82	48.98	48.14	47.29	0.84	0.07	108
72	146.44	45.59	44.74	43.88	43.01	42.14	0.86	0.07	107
73	141.26	40.39	39.51	38.63 .	37.74	36.85	0.88	0.06	106
74	135.96	35.07	34.17	33.27	32.36	31.45	0.90 .	0.06	105
	-1 30.54	29.63	28.71	27.79	26.87	25.95	0.92	-0.06	104
76	125.02	24.09	23.16	22.22	21.28	20.34	0.94	0.05	103
77	119.39	18.44	17.49	16.54	15.58	14.62	0.95	0.05	102
78	113.66	12.70	11.73	10.76	9.79	8.82	0.97	0.05	101
79	17.84	6.86	5.88	4.90	3.92	2.93	0.98	0.04	100
80	-0 61.94	60.95	59.96	58.96	57.96	56.96	1.00	-0.04	99
81	055.96	54.96	53.95	52.94	51.94	50.93	1.01	0.03	98
82	049.92	48.91	47.90	46.88	45.86	44.84	1.02	0.03	97
83	043.81	42.79	41.76	40.74	40.71	39.68	1.03	0.03	96
84	037.65	36.62	35.58	34.55	33.52	32.48	1.03	0.02	95
85	-0 31.45	30.42	29.38	28.34	27.30	26.26	1.04	-0.02	94
86	025.21	24.17	23.13	22.08	21.03	19.98	1.05	0.02	93
87	018.93	17.88	16.83	15.78	14.73	13.68	1.05	0.01	92
88	012.63	11.58	10.53	9.48	8.42	7.37	1.05	-0.01	91
89	-0 6.32	5.27	4.21	3.16	2.11	1.05	1.05	0.00	90
	60^{\prime}	50^{\prime}	40^{\prime}	30^{\prime}	20^{\prime}	10^{\prime}			Arg.

Note.-When the degrees of the Argument are read from the right hand side of the Table, the tens of minutes must be read from the bottom; and the Reduction and its Secular Variation are affected with the sign + instead of - .
(
\qquad

20

$$
5
$$

\qquad
\qquad
Cher

-
 $5+\frac{2}{2}+2$5

y
1840

$$
5
$$

\therefore

(xiexhta
20.
\square
S. She
Se

$$
58
$$

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below.

UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: * Tables du Soleil, exécutées d'après les ordres de la Société Royale des Sciences de Copenhague, par MM. P. A. Hansen et C. F. R. Olufsen. Copenhague. 1853.
 \dagger The Pulkowa constant of aberration $20^{\prime \prime} .4451$ should however be employed instead of $20^{\prime \prime} 255$.
 \ddagger Peters' Numerus Constans Nutationis, p. 71.
 § Tables du Soleil, p. 21.

[^1]: *This is the value of the longitade of the perilielion at the epoch 1850.0 , which was employed in computing the tables of the perturbations to double entry.

 + Ligoronsly, the Argument which should be employed as the horizontal Argument of the tables of perturbations to double entry, has this expression,

 $$
 71 d .65641+d-924.200801109 \mathrm{~m},
 $$

[^2]: "The single term in the perturbations of the latitude, duc to the action of Saturn, has not been tabulated. It seemed super. fluous to take account of it, when the corresponding term in the latitude of the Larth, producing, at maximum, an effeet in the geocentric position of Venus, nearly three times greater, is neglected by Hansen and Olufsen in their "Tables du Solcil."

[^3]: * Der Venus-durehgang von 1769, p. 107.

[^4]:

